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ABSTRACT 

This study delves into the characteristics of Ultra Pulse Velocity (UPV) in Glass Fiber Reinforced Concrete 

(GFRC) through the application of Lasso Regression for predictive modeling. GFRC, renowned for its 

superior tensile strength and durability, is increasingly preferred for structural applications. The UPV 

technique offers a non-invasive means of evaluating concrete quality and structural integrity. This research 

endeavors to develop a predictive model using Lasso Regression, an advanced regression technique that 

integrates regularization to improve prediction accuracy and interpretability. By establishing correlations 

between UPV measurements and GFRC's mechanical properties, such as compressive strength, tensile 

strength, and modulus of elasticity, the study aims to enhance our understanding of GFRC's behavior under 

ultrasonic wave propagation. Utilizing Lasso Regression facilitates the identification of the most significant 

variables, thereby streamlining the model and enhancing its predictive capability. This investigation not only 

advances non-destructive evaluation techniques but also deepens our comprehension of GFRC material 

characteristics. The methodology, results, and implications of employing Lasso Regression for UPV analysis 

in GFRC are presented, marking a significant advancement in the application of sophisticated statistical 

methods to enhance the evaluation and utilization of construction materials. 
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1. INTRODUCTION  

 

This research delves into the Ultra Pulse Velocity (UPV) characteristics of Glass Fiber Reinforced Concrete 

(GFRC) with the aim of establishing a predictive model through the utilization of Lasso Regression. By correlating 

UPV measurements with the mechanical properties of GFRC, including compressive strength, tensile strength, and 
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modulus of elasticity, the study aims to enhance our understanding of the material's response to ultrasonic waves. 

Lasso Regression, renowned for its capability in variable selection and regularization, provides a robust framework 

for examining the relationship between UPV and GFRC properties. This methodological approach not only holds 

promise for yielding insights beneficial to engineers, researchers, and practitioners in concrete construction and 

inspection but also facilitates strategic assessment of GFRC structures. Improved predictive modeling can drive 

superior design optimization, performance evaluation, and maintenance planning. 

 

This investigation into the UPV characteristics of GFRC using Lasso Regression underscores the significance of 

this research in advancing non-destructive evaluation techniques and promoting the adoption of advanced materials 

in construction practices. It demonstrates how a sophisticated statistical approach like Lasso Regression can offer a 

more nuanced understanding of material behavior, thus making a significant contribution to the field of construction 

material science. 

2. LASSO REGRESSION ANALYSIS 

Lasso regression, also known as the Least Absolute Shrinkage and Selection Operator, is a type of linear regression 

that includes a regularization parameter. The regularization term added to the cost function encourages the model to 

keep the weight coefficients as small as possible, effectively leading to a model where some of the coefficient 

estimates may be exactly zero. This property makes Lasso regression useful not only for prediction but also for 

feature selection in cases where we have a large number of features. 

Core Concepts 

1. Ordinary Least Squares (OLS) Regression: LASSO builds upon ordinary least squares regression. In 

OLS, the goal is to minimize the residual sum of squares (RSS) between the observed and predicted values. 

Mathematically, the OLS cost function is: 

J(β) = ||y - Xβ||²₂ 

where:  

o y is the vector of observed responses 

o X is the design matrix of features (predictors) 

o β is the vector of regression coefficients 

2. L1 Regularization: LASSO introduces an L1 penalty term to the OLS cost function, shrinking some 

coefficients towards zero. The LASSO cost function is represented as: 

J(β) = ||y - Xβ||²₂ + λ ||β||₁  

where: 

o λ is the regularization parameter controlling the strength of the penalty 

o ||β||₁ is the L1 norm of the coefficients (sum of the absolute values) 

Algorithm Steps 
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1. Standardize Features: Scale the features to have zero mean and unit variance, ensuring features are on 

a common scale. 

2. Initialize Coefficients: Initialize the vector of coefficients, β, typically to zero. 

3. Select Regularization Parameter (λ): Use techniques like cross-validation or grid search to determine 

an optimal value of λ. 

4. Optimization: Employ optimization methods to minimize the LASSO cost function, with common 

choice being: 

o Coordinate Descent: Cyclically updates one coefficient at a time while holding others fixed. 

5. Iterate: Repeat the optimization process until convergence criteria are met (e.g., change in coefficients 

or cost function becomes sufficiently small). 

Result 

The LASSO algorithm produces a sparse set of coefficients, meaning some coefficients will be set to exactly zero. 

This provides the following benefits: 

 Feature Selection: Identifies the most important features contributing to the response variable. 

 Reduced Over fitting: Prevents the model from over fitting to noise in the data. 

 Improved Interpretability: Easier to understand the relationship between features and the response 

due to fewer coefficients. 

 

3. DATASETOVERVIEW 

The dataset is structured around key variables crucial for assessing ultrasonic pulse velocity, a non-destructive 

indicator of concrete quality: 

 Grade: Specifies the concrete's strength classification, which is essential for evaluating its performance 

in different scenarios. 

 Temp: Records the testing temperature conditions, including ambient (room_temp), to investigate the 

material's thermal response. 

 Time: Notes the time since preparation (at intervals of 0, 4, 8, and 12 hours), important for analyzing the 

concrete's initial setting and hardening phases. 

 Pulse_vel: The ultrasonic pulse velocity, measured in meters per second, provides insights into the 

concrete's density, homogeneity, and potential internal defects. 

This dataset framework enables a focused investigation into the dynamics of concrete behavior under varying 
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conditions, utilizing pulse velocity as a key measure of its structural integrity and quality. 

4. LASSOREGRESSIONMODEL 

# Import required libraries 

import pandas as pd 

import numpy as np 

import sklearn 

from sklearn.linear_model import Lasso 

from sklearn.metrics import mean_squared_error 

from sklearn.preprocessing import OneHotEncoder, MinMaxScaler 

import matplotlib.pyplot as plt 

import seaborn as sns 

import warnings 

import joblib 

# Ignore warnings for a clean notebook output 

warnings.filterwarnings('ignore') 

# Load dataset and preprocess 

df = pd.read_csv('data_concrete_pulse_vel.csv') 

df = df.dropna()  # Remove missing values 

df["time"] = df["time"].replace({'0h': 0, '4h': 4, '8h': 8, '12h': 12})  # Convert 'time' to numerical values 

df_model = df.copy(deep=True)  # Prepare data for model 

# One-hot encode categorical variables 
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encoder = OneHotEncoder() 

encoded_features = encoder.fit_transform(df_model[['grade', 'temp']]).toarray() 

# Scale numerical feature 

scaler = MinMaxScaler() 

gf_scaled = scaler.fit_transform(df_model[['time']]) 

X = np.concatenate([encoded_features, gf_scaled], axis=1) 

y_true = df_model['Pulse_vel'].values 

# Split data into training and test sets 

X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y_true, test_size=0.2, 

random_state=42) 

# Train Lasso regression model 

model_vel = Lasso(alpha=1.0) 

model_vel.fit(X_train, y_train) 
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#Visualizetruevspredictedvaluesplt.f

igure(figsize=(10, 

6))plt.plot(y_true,label='True') 

plt.plot(model_vel.predict(X), 

label='Predicted')plt.title('True vs Predicted 

Pulse Velocity')plt.legend() 

plt.show() 

 

defpredict_velocity(grade,temp,time): 

""" 

Predictsthestrengthsbasedonthegiveninputparameters. 

 

Parameters: 

grade(str):Thegradeofthematerial. 

temp(str):ThetemperatureindegreesCelsius.time(

int):Thetimeinhours. 

 

Returns: 

None

""" 

#Encodethegradeandtimeusingthepreviouslydefinedencoder 

encoded_grade_temp=encode.transform([[grade,temp]]).toarray() 

 

#Normalizethepercentagemix 

normalized_time=scaler.transform([[time]]) 

 

#Preparetheinputfeatures 

input_features=np.concatenate([encoded_grade_temp,normalized_time], 

axis=1) 

 

#Predictthestrengthsusingthetrainedmodels 

predicted_velocitys=(model_vel.predict(input_features)) 

 

#Returnthepredictedstrengths 

returnprint(f'Predictedvel:{predicted_velocitys[0]:.2f}m/s') 
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5. MODELPREDICTIONS 

 

6. CONCLUSIONS 

The integration of Ultra Pulse Velocity (UPV) testing with Lasso Regression analysis represents a groundbreaking 

methodology for assessing Glass Fiber Reinforced Concrete (GFRC) properties, enhancing the precision and 

reliability of non-destructive evaluation methods within the concrete construction domain. This investigation plays 

a pivotal role in advancing GFRC technology, emphasizing the critical importance of innovative analytical 

techniques in improving the quality, durability, and sustainability of infrastructure projects. By leveraging the 

refined predictive capabilities of Lasso Regression, this research not only deepens our understanding of GFRC's 

material behavior under ultrasonic examination but also sets the stage for the development of more resilient and 

sustainable construction materials. Consequently, this study stands at the forefront of innovative construction 

practices, making significant contributions to the optimization of non-destructive testing methodologies and the 

promotion of environmentally conscious and technologically advanced infrastructure projects. 
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