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ABSTRACT 

In this work, we utilized two types of Hamiltonian model to study the behaviour of two interacting electrons 

on a two dimensional (2D) 5X5 square lattice. The Hamiltonian is the single band Hubbard model and the 

gradient Hamiltonian model. The single band Hubbard model is only linearly dependent on lattice 

separations. However, it does not consider the lattice gradient encountered by interacting electrons as they 

hop from one lattice point to another. Consequently, we have in this study developed a gradient 

Hamiltonian model to solve the associated defects pose by the limitations of the single band Hubbard 

model.  The results of the ground-state energies produced by the gradient Hamiltonian model are more 

favourable when compared to those of the Hubbard model. It is also established in this study that high 

negative interaction strength decreases the correlation time between the two electrons as they hop from one 

lattice position to another.      

Keywords: Hubbard model, correlation time, ground-state energy, interacting electrons, variational 

parameters and gradient Hamiltonian model. 

 

1.0 INTRODUCTION. 

 

There has been dramatic progress in the development of electron correlation techniques for the accurate treatment 

of the structures and energies of molecules. A particle like an electron, that has charge and spin always feels the 

presence of a similar particle nearby because of the Coulomb and spin interactions between them. So long as 

these interactions are taken into account in a realistic model, the motion of each electron is said to be correlated. 

The physical properties of several materials cannot be described in terms of any simple independent electron 

picture; rather the electrons behave cooperatively in a correlated manner [1]. The interaction between these 

particles depends then in some way on their relative positions and velocities. We assume for the sake of simplicity 

that their interaction does not depend on their spins.  

  

The single band Hubbard model (HM) is the simplest Hamiltonian containing the essence of strong correlation. 

Notwithstanding its apparent simplicity, our understanding of the physics of the Hubbard model is still limited. In 

fact, although its thermodynamics was clarified by many authors [2] various important quantities such as 

momentum distribution and correlation functions, which require an explicit form of the wave function, have not 

been properly explored [3].  
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The single band Hubbard model (HM) is linearly dependent only on lattice separations. However, it does not 

consider the lattice gradient encountered by interacting electrons as they hop from one lattice point to another. 

The linear dependence of the Hubbard model only on the lattice separations would certainly not provide a true 

comprehensive quantum picture of the interplay between the two interacting electrons. It is clear that one of the 

major consequences of the HM is to redistribute the electrons along the lattice sites when agitated. However, we 

have in this study, extended the Hubbard model by including gradient parameters in order to solve the associated 

defects pose by the limitations of the single band HM.  

 

Electron correlation plays an important role in describing the electronic structure and properties of molecular 

systems.  Dispersion forces are also due to electron correlation. The theoretical description of strongly interacting 

electrons poses a difficult problem. Exact solutions of specific models usually are impossible, except for certain 

one-dimensional models. Fortunately, such exact solutions are rarely required when comparing with experiment 

[4].  

  

Most measurements, only probe correlations on energy scales small compared to the Fermi energy so that only 

the low – energy sector of a given model is of importance. Moreover, only at low energies can we hope to excite 

only a few degrees of freedom, for which a meaningful comparison to theoretical predictions can be attempted 

[5].   

 

One of the first steps in most theoretical approaches to the electronic structure of molecules is the use of mean – 

field models or orbital models. Typically, an orbital model such as Hartree – Fock self – consistent – field theory 

provides an excellent starting point which accounts for the bulk ( 99 %) of the total energy of the molecule [6].  

 

However, the component of the energy left out in such a model, which results from the neglect of instantaneous 

interactions (correlations) between electrons, is crucial for the description of chemical bond formation. The term 

“electron correlation energy “ is usually defined as the difference between the exact non-relativistic energy of the 

system and the Hartree – Fock (HF) energy. Electron correlation is critical for the accurate and quantitative 

evaluation of molecular energies [7].    

 

Electron correlation effects, as defined above, are clearly not directly observable. Correlation is not a perturbation 

that can be turned on or off to have any physical consequences. Rather, it is a measure of the errors that are 

inherent in HF theory or orbital models. This may lead to some ambiguities. While HF is well – defined and 

unique for closed – shell molecules, several versions of HF theory are used for open-shell molecules [8].     

 

In probability theory and statistics, correlation, also called correlation coefficient, indicates the strength and 

direction of a linear relationship between two random variables. In general statistical usage, correlation or co-

relation refers to the departure of two variables from independence, although correlation does not imply causation 

[9]. 
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Interacting electrons are key ingredients for understanding the properties of various classes of materials, ranging 

from the energetically most favourable shape of small molecules to the magnetic and superconductivity 

instabilities of lattice electron systems, such as high-Tc superconductors and heavy fermions compounds [10]. 

 

It is clearly not possible to give a comprehensive account of all the different theories and applications within the 

space available. We have to give brief and somewhat qualitative descriptions of the different methods that have 

been developed to describe electron correlation effects.  Some of the several methods of taking the electron 

correlation into account are: Couple cluster, Hartree – Fock and Many body perturbation theory or Moller – 

Plesset perturbation theory [11], [12]. 

  

The organization of this paper is as follows. In section 2 we provide the method of this study by giving a brief 

description of the single - band Hubbard Hamiltonian and the trial wavefunction to be utilized. We also present in 

this section an analytical solution for the two particles interaction in a 5X5 cluster of the square lattice. In section 

3 we present numerical results. The result emanating from this study is discussed in section 4. This paper is 

finally brought to an end with concluding remarks in section 5 and this is immediately followed by list of 

references.  

 

1.1 RESEARCH METHODOLOGY 

 

In this study, we applied the gradient Hamiltonian model on the correlated trial wave-function. The correlation 

time and ground-state energies of the two interacting electrons which is the result of the action of the gradient 

Hamiltonian model on the correlated trial wave-function is thus studied by means of variational technique.  

2.0 MATHEMATICAL THEORY 

 

2.1 The single-band Hubbard Hamiltonian (HM). 

  

The single-band Hubbard Hamiltonian (HM) [9] reads; 

 

 


  
i

i
i

ij

ji nnUchCCtH


 ..                (2.1) 

 

Where ji,  denotes nearest-neighbour (NN) sites,   ji CC  is the creation (annihilation) operator with spin  

or   at site i , and  iii CCn   is usually known to be the occupation number operator, ..ch (  ij CC
 ) is the 

hermitian conjugate . The transfer integral ijt  is written as ttij  , which means that all hopping processes have the 

same probability. The parameter U is the on-site Coulomb interaction. It is worth mentioning that in principle, the 

parameter U is positive because it is a direct Coulomb integral. The exact diagonalization of (2.1) is the most 

desirable one. However, the method of exact diagonalization is applicable only to a small-finite dimensional 
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lattice system, since the dimension of the Hamiltonian matrix increases very rapidly with the number of sites and 

number of particles. 

 

2.2 The gradient Hamiltonian model.  

 

The single band Hubbard model (HM) has some limitations as it is linearly dependent only on lattice separations. 

It does not consider the lattice gradient encountered by interacting electrons as they hop from one lattice point to 

another. The linear dependence of the Hubbard model only on lattice separations would certainly not provide a 

thorough understanding of the interplay between interacting electrons. Consequently, we have in this work, 

extended the single band Hubbard model by introducing gradient displacement parameters. We hope that the 

inclusion of the gradient displacement parameters will help to resolve the associated defects pose by the 

limitations of the single HM when applied in the determination of some quantum quantities. The gradient 

Hamiltonian model read as follows:  

 

 


  
i

i
i

ij

ji nnUchCCtH


 ..  



ji

vt sin  

 

  
 


ji ji

dh tt  tantantantancos           (2.2) 

Now, vt , ht and dt are the corresponding vertical, horizontal and diagonal kinetic hopping terms of the interacting 

electrons while the other symbols retain their usual meaning.  

 

2.3  The correlated variational trial wave function.  

 

The correlated variational trial wavefunction.given by [13] is of the form 

 

  iiX i
i

,  





ji
ji

jijiX ,,            (2.3) 

Where  ,...,2,1,0iX i  are variational parameters and  ji ,  is the eigen state of a given electronic state, l  is 

the lattice separation. However, because of the symmetry property of (2.3) we can recast it as follows. 

 

                                                                     
llX

l

                                         (2.4) 

In this current study the complete details of the basis set of the two dimensional (2D) 5X5 lattices can be found in 

[14]. However, because of the complexity of the lattice basis set we are only going to enumerate in the tables 

below the relevant information that are suitable to our present study. Table 2.1 – 2.3 shows the linear dependence 

of the two hopping electrons in the vertical v , horizontal h  and diagonal d on the lattice angles respectively. For 

instance, consider lattice separation 1l   along the vertical plane, one electron is located at lattice site 1,1 ( yx, ) 

while the other one can hop from 1,1 to 1,2 (which is vertical) and from 1,1 to 2,1 (which is horizontal). Then 
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lattice separation 2l , one electron is located at lattice site ( 1,1 )   ( yx, ) while the other electron can hop from 

1,1  to 2,2  (which is diagonal). We have also that from the geometry of the 5X5 square lattice the gradient or the 

angles between the two interacting electrons are as follows: 0
90 , 0

180 , 0
45 , 0

63 and 0
6.26  this is 

given in the tables below. 

 

Table 2.1: Relevant information derived from the basis set of the geometry of 2D 5 x 5 square lattice. 
Lattice Separation l

and Pair wave 
function 

l
  

 
 

Representative 
Pair electronic 

states 

 ji ,  

Method of determining 
the projection between 

any two separations  

Calculation of the 
angle between 

any two 
separations 

Calculation of 
the lattice 
separation 

length l  


11

, yxyx  

l  
l

  
11

, yxyx  

 
0 

 

0
 
   )0(    

 

 11,11  

 
Zero projection 

 
On-site with no 

separation 

01  xx

01  yy  

 

1 1     )(a  

 

 12,11  

Vertical 
Linear lattice length 

a  

 
 

)90(sin
0

  

axx 11 

01  yy  

 21,11  Horizontal 
Linear lattice length 

a  

)180(cos
0

  

 
2 

 

2
 

)2( a  

 

 22,11  

Diagonal 

   22

11 ayyaxx   

)45(tan
0

  

1
2

2


a

a

adj

opp
 

axx 11 

ayy 11   

 

3 3   )2( a  

 13,11  

Vertical 
Linear lattice length 

)( aa   
)90(sin

0
  axx 21 

01  yy  

 

 

 31,11  

Horizontal 
Linear lattice length 

)( aa   

)180(cos
0

  

4 4
 

)5( a  

 

 23,11  
Diagonal 

   22

11 ayyaxx   

)63(tan
0

  

2
2


a

a

adj

opp
 

axx 11 

ayy 21   

 

 

 32,11  

Diagonal 

   22

11 ayyaxx   

)6.26(tan
0

  

5.0
2

1


a

a

adj

opp
 

axx 21 

ayy 11   

 

 
5 

 

5
 

)8( a  

 

 33,11  

Diagonal 

   22

11 ayyaxx   

)45(tan
0

  

1
2

2


a

a

adj

opp
 

axx 21 

ayy 21   
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Table 2.2: Relevant information derived from the basis set of the geometry of 2D 5 x 5 square lattice. 

Lattice Separation l  

and actual  lattice 
separation 
distance d  

 

Total number 
of nearest 
neighbour 
sites at a 

separation 

length l  

Pair 
wave 

function 

l
  

Total 
number of 

Pair 
electronic 

states  

Number of 
different 

pair electronic 
states 

at lattice 

separation l  

)(
2

N
l
  

Representative 
2 D Pair electronic 

states for each 

separation l  


11

, yxyx  

l  
Separation 
Distance d  

l
  

l
  

ll
  

0 0  1 0  25  25521   
     

 11,11  

1 a  4  1  100  100524    12,11  

2 a2  4  2  100  100524    22,11  

3 a2  4  3  100  100524    13,11  

4 a5  

 
8

 
 

4  200  200528   
 23,11  

 32,11  

5 a8  4
 5  100  100524    33,11  

Total number of electronic states 

5N ;
 

2
)( NN   

625 625
 

 
 

Table 2.3: Relevant information derived from the basis set of the geometry of 2D 5 x 5 square lattice. 
Lattice Separation l  

and actual  lattice 
separation 
distance d  

 

Pair wave 
function 

l
   

mA
10

101
0 
  

Total 
number of 
sites at a 

separation 

length l  

Total 
number of 

Pair 
electronic 

states  

Possible number 
of lattice 

separation 
hopping terms 

 

Representative 
2 D Pair electronic 

states for each 

separation l  


11

, yxyx  

l  
Separation 
Distance d  

Separation 
Distance )(m  

l
  

ll
  

0 
0  0  0  1 25  0 (on-site) 

     
 11,11  

1 1  a  1
10

10


  4  
50  2 (vertical)  12,11  

50  2 (horizontal)  21,11  

2 2  a2  
10

102


  4  100  4 (diagonal)  22,11  

3 3  a2  2
10

10


  4  

50  2 (vertical)  13,11  

50  2 (horizontal)  31,11
 

4 4  a5  

 

5
10

10


  

 

8  
100  4 (diagonal)  23,11  

100  4 (diagonal)  32,11  

5 5  a8  8
10

10


  4  100  4 (diagonal)  33,11  

Total number of electronic states 

5N ;
 

625)(
2
 NN  

25 625
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When we carefully apply equations (2.2) and (2.3) and considering the information provided in Tables 2.1 – 2.3 

above we can conveniently solve for the wave function and the total energy of the two interacting electrons. 

However, to get at these two quantum quantities the two important conditions stated below must be duly 

followed. 

 

(i) the field strength tensor  

                                                    








jiiff

jiiff
ji ji

0

1
                              (2.5) 

 

(ii)  the  Marshal rule for non-conservation of parity [15]             

             

                                                   
 ijji ,,              (2.6)     

 

Hence the following two basic equations can be established,  and  H  which we are to be employed in 

the variational calculation.  

                                    554433221100
 XXXXXX                          (2.7) 

                                               
 2

5
2
4

2
3

2
2

2
1

2
0 4844425 XXXXXX 

           
                         (2.8) 

  52321241210110 26824122 XXXXXXXtH  

             
 455444146323 822224 XXXXXX 654X 754 X          

              254X 573666865556 262424  XXXXXX + 774X  

              872X 784X 988868 644  XXX 9989 62  XX + 00 UX         

                        
 sinsin 3311  XtXt

vv
 coscos 3311  XtXt

hh
 

                      
 tantan 5522  XtXt

dd
 tantan 4444  XtXt

dd
                      (2.9) 

       
  544342312110 888484)4)(25( XXXXXXXXXXXXtH

2

4

2

3 42 XX  + 

  2
0

2
5 )4/(4 XtUX   

  
  sinsin 3311 XtXt

vv

 
   cos33

2
11

2
31 XXt

h
 

              
  tantantantan 44

2
444

2
455

2
522

2
2  XXXXt

d
                  (2.10) 

 

                       
  544342312110 888484)4)(25( XXXXXXXXXXXXtH  

             2
0

2
5

2
4

2
3 )4/(442 XtUXXX     sin5050 22

31 XXt
v

   cos5050 22
31 XXt

h
  

                                  tan100tan100tan100tan100 2
4

2
4

2
5

2
2 XXXXt

d
                                (2.11) 

Again we should know that the values of 
ll

 are stated in Tables 2.2 - 2.3.  
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2.4 The variational theory 

 

Configuration interaction is based on the variational principle in which the trial wave-function being expressed as 

a linear combination of Slater determinants. The expansion coefficients are determined by imposing that the 

energy should be a minimum. The variational method consists in evaluating the integral 

 

                                      
 HE g

 dthtvtut HHHHH                            
   

(2.12) 

 

Where 
gE is the correlated ground-state energy while  is the guessed trial wave function. We can now 

differentially minimize (2.14) using the below equations.  

 

                                                   















 H

XX
E

X

E

ii
g

i

g

                                        
(2.13) 

 

Subject to the condition that the correlated ground state energy of the two interacting electrons is a constant of the 

motion, that is 

                                                     
0





i

g

X

E
           ;    3,2,1,0 i                                                       (2.14) 

 

By substituting (2.8) and (2.11) into (2.12) and also dividing top and bottom by t25 we get 

 

 2

5

2

4

2

3

2

2

2

1

2

0
48444 XXXXXXE    312110 163216 XXXXXX  4232 XX  4332 XX    5432 XX

2
0

2
5

2
4

2
3 )4/(416168 XtUXXX    sin2 2

1XV   cos2 2
1XH  tan4 2

2XD  sin2 2
3XV  cos2 2

3XH

 tan4 2
4XD  tan4 2

4XD    tan4 2
5XD                                                                                         (2.15) 

 

Where tEE g / (is the total energy of the two interacting electrons), while ttV
v

/ , ttH
h

/ and ttD
d

/ are the 

ratios of the vertical, horizontal and diagonal kinetic hopping to the total number of lattice separations or total 

kinetic hopping sites respectively. In this work, we take the values of 16.0625/100/  ttV
v ,

16.0625/100/  ttH
h and 64.0625/400/  ttD

d . This is just the number of states contain within each of the 

separation (vertical. Horizontal and diagonal) divided by the total pair electronic states in the lattice. When (2.13) 

is successively applied to (2.15) we get the following corresponding equations.  

 

                                                                     010 )4/(8162 XtUXXE                                                         (2.16) 

                                      
)cos4()sin4(1632168 113201  XHXVXXXXE                                (2.17) 

                                                            )tan8(32328 2412 XDXXXE                                                   (2.18) 

                                     
)cos4()sin4(1632168 333413  XHXVXXXXE                                 (2.19) 
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)tan8()tan8(3232323216 4454324  XDXDXXXXXE                        (2.20) 

                                                           
)tan8(32328 5545 XDXXXE                                                       (2.21) 

 

We can carefully transform the resulting (2.16) – (2.21) into a homogeneous eigen value problem of the form 

 

                                                               
  0 ll XIA


                                                       (2.22) 

 

Where A is an NXN matrix which takes the dimension of the number of separations, l is the eigen value (total 

energy E ) to be determined, I is the identity matrix which is also of the same order as A , iX


 are the various eigen 

vectors or simply the variational parameters corresponding to each eigen value. After some algebraic subroutine 

we get the matrix. 

 

                              

















































































0

0

0

0

0

0

440000

222200

042020

04040

00242

000084

5

4

3

2

1

0

X

X

X

X

X

X

LE

KE

PE

NE

ME

uE

                   

(2.23) 

 

That is, for the sake of clarity we have introduced the symbols:  cos5.0sin5.0 HVM  , tanDN  , 

 cos5.0sin5.0 HVP  ,  tan5.0tan5.0 DDK  and tanDL  . Suppose we put NM  P 0 LK , then 

we realize the results of the single band Hubbard model. Consequently, after careful substitution of the actual 

values of M , N P K and L , we get after substitution matrix below. 

 

                                     















































































0

0

0

0

0

0

64.440000

28.22200

042020

04064.040

00242

000084

5

4

3

2

1

0

X

X

X

X

X

X

E

E

E

E

E

uE

                             (2.24) 

 

Where tUu 4/ is the interaction strength between the two interacting electrons and tEE g / is the total energy 

possess by the two interacting electrons as they hop from one lattice site to another. From the matrix given by 

(2.26) we can now determine the total energy and the corresponding variational parameters for various arbitrary 

values of the interaction strength. 
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2.5 CALCULATION OF THE CORRELATION TIME 

 

The rate at which the force which can be internal )(tF  or external  )(t , agitating the motion of the electrons can 

be characterized by some correlation time  which measures roughly the mean time between two successive 

maxima (or minima) of the fluctuating function )(tF  or )(t . Correlation time is quite small on a macroscopic 

scale. The ordinary statistical average of a function of position lx  and angular displacement 
l

 at a given time t  

over all systems of the lattice may be written as 

 











1

1

1

1

),(),(
1

);,(
N

l

N

l

ll tytxy
N

txy                                       (2.25) 

Where lx ( 5,,2,1 l ) and l ( 5,,2,1 l ) which may correspond to vertical v , horizontal h  or diagonal d . The 

operations of taking a time derivative and taking an ensemble average commute since one can interchange the 

order of differentiation and summation. The Mean velocity of the interacting electrons  

                                            v  







 









1

1

1

1

),(),(
1

);,(
N

l

N

l

ll tytxy
Ndt

d
txy

dt

d
                              (2.26) 

                                     v 


















1

1

1

1

),(),(
1

);,(
N

l

N

l

ll tytxy
dt

d

N
txy

dt

d
                                     (2.27) 

                                             v ),(),();,( tytxy
dt

d
txy

dt

d
ll                                                    (2.28) 

                        v ),(),(),(),();,( ty
dt

d
txytxy

dt

d
tytxy

dt

d
llll                          (2.29) 

The mean acceleration a  of the two interacting electrons becomes 

                    a  ),(),(),(),();,(
2

2

2

2

txy
dt

d
tytxy

dt

d
ty

dt

d
txy

dt

d

dt

vd
llll     

                                                 
),(),(),(),(

2

2

ty
dt

d
txyty

dt

d
txy

dt

d
llll                                   (2.30) 

a  ),(),(),(),(),(),(2
2

2

2

2

2

2

ty
dt

d
txytxy

dt

d
tytytxy

dt

d

dt

vd
llllll  

        
  (2.31) 

We can now multiply through (2.31) by  (the reduced mass of the two interacting electrons). The multiplication 

will simply translate the mean acceleration of the two interacting electrons into force. It should also be made 
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known that the force responsible for the mean acceleration of the two electrons can be described as a sum of both 

the internal )(tF and external )(t forces. That is                                                   

)()(),(),(),(),(),(),(2
2

2

2

2

2

2

tFtty
dt

d
txytxy

dt

d
tytytxy

dt

d
llllll 








   

                                                                      

                                                                                                 (2.32) 

)()(),(),(),(),(),(),(2
2

2

2

2

2

2

tFtty
dt

d
txytxy

dt

d
tytytxy

dt

d
llllll 








   

                                                                                                                                                                                                                            

(2.33) 

)()(),(),(),(),(2
2

2

2

2

tFttytxy
dt

d
tytxy

dt

d
llll 








                           (2.34) 

 

By integrating all through the equation given by (2.34) twice and with little simplification we get 

 

                   

dttFtytxy
dt

d
tytxy

dt

d
llll 








 )(),(),(),(),(2                    (2.35) 

                                             tddttFtytxy ll )(
2),(),(3                                       (2.36) 

                                 tddttytxy
dt

d
lltytxy ll ),(),(

2

2

.),(),(3                            (2.37) 

                                         
),(),(.),(),(3 tytxy lltytxy ll                                        (2.38) 

                                                        
),(),(2. tytxy ll                                                             (2.39) 

                                                       
),(),(2. tytxyvv ll                                                             (2.40) 

                                                         
)()(2 llll yxyvE  

                                                                
  (2.41) 

                                                           l

l

l
E

yxyv l )()(2 
                                         (2.42) 

Where we have introduced the same constraint for both lE and 
l

 ( 5,,2,1 l  ) and also suppressed t  in (2.42) for 

clarity of purpose. Thus vE
l

 is the correlated ground-state energy which we have assume as the same as the 

total energy of the two interacting electrons and it has a unit of kgm
2
/s

2 
or simply Joules J. Note that on the right 

hand side of (2.42), lx has the dimension of length m in the atomic scale. That is one atomic spacing a is equal to 1 

Amstrong 0
A ( mA

100
101

 ).  

 

The Amstrong is the quantum mechanical analogue of length as in classical mechanics. The reduced mass  has 

the usual unit of kg with a value of 31
101.9


 kg, the unit of the mean velocity of electron v is m/s which is equal to 
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-0.00028 m/s and finally the angular displacement l is in radian. Hence the unit of the correlation time l is 

seconds s .   

To obtain the value for )(
l

xy , the calculation is simply done as follows:
 

)( lxy = lX 
10

10
l

d
 
(meters), that is l

=1, 2,…, 5 is the lattice separation constant) and 
l

d is the actual lattice distance ( 8,,2,1  ), also lX are the 

variational parameters.  

3.0          PRESENTATION OF RESULTS. 

The results of the total energies emerging from the matrix given by (2.24) are shown in Table 3.1 while results of 

the correlation time which is given by equation (2.42) are enumerated in Tables 3.2 below. We should also note 

that the result of the single band HM with respect to the interaction strength corresponds to 0 DHV while 

that of the gradient Hamiltonian model as a function of the interaction strength (present work) corresponds to 

16.0 HV , 64.0D . 

Table3.1. shows the calculated values of the variational parameters lX and the Total Energies lE possess by 

the two interacting electrons as a function of arbitrary values of the interaction strength tu 4/ . 
 

tu 4/  
 

V  
 

H  

 

D  

Total 
Energy 

tEgEl /  

Variational  Parameters 

lX  ( l 0, 1, 2, 3, 4, 5) 

0
X  

1
X  

2
X  3

X  
4

X  5
X  

50 
 0.16 0.16 0.64 -8.3103 0.0118 0.3062 0.4223 0.4162 0.5035 0.5487 

0 0 0 -7.7585 0.0131 0.3390 0.4242 0.4538 0.4837 0.5148 

40 
0.16 0.16 0.64 -8.3117 0.0146 0.3070 0.4225 0.4162 0.5033 0.5483 

0 0 0 -7.7602 0.0162 0.3399 0.4244 0.4537 0.4835 0.5143 

30 0.16 0.16 0.64 -8.3139 0.0192 0.3081 0.4228 0.4162 0.5029 0.5475 

 0 0 0 -7.7630 0.0214 0.3412 0.4247 0.4537 0.4830 0.5134 

20 
0.16 0.16 0.64 -8.3183 0.0281 0.3104 0.4233 0.4162 0.5022 0.5461 

0 0 0 -7.7684 0.0313 0.3438 0.4253 0.4535 0.4821 0.5117 

10 
0.16 0.16 0.64 -8.3300 0.0524 0.3163 0.4246 0.4159 0.5000 0.5420 

0 0 0 -7.7834 0.0587 0.3506 0.4266 0.4528 0.4794 0.5068 

5.0 
0.16 0.16 0.64 -8.3494 0.0919 0.3256 0.4262 0.4149 0.4958 0.5347 

0 0 0 -7.8084 0.1039 0.3613 0.4279 0.4508 0.4739 0.4978 

0.0 
0.16 0.16 0.64 -8.4877 0.3491 0.3704 0.4166 0.3897 0.4469 0.4646 

0 0 0 -8.0000 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082 

-1.0 
0.16 0.16 0.64 -8.7328 0.6435 0.3807 0.3535 0.3118 0.3345 0.3269 

0 0 0 -8.3668 0.7235 0.3949 0.3176 0.2934 0.2695 0.2468 

-1.5 
0.16 0.16 0.64 -9.1847 0.8461 0.3368 0.2491 0.2025 0.1953 0.1719 

0 0 0 -8.9871 0.8838 0.3300 0.2110 0.1770 0.1442 0.1156 

-2.0 
0.16 0.16 0.64 -10.2160 0.9433 0.2613 0.1437 0.1039 0.0828 0.0594 

0 0 0 -10.1506 0.9508 0.2556 0.1261 0.0943 0.0643 0.0418 

-5.0 
0.16 0.16 0.64 -20.8097 0.9946 0.1007 0.0207 0.0115 0.0037 0.0009 

0 0 0 -20.8086 0.9947 0.1005 0.0200 0.0114 0.0034 0.0008 

-10 
0.16 0.16 0.64 -40.4011 0.9987 0.0501 0.0051 0.0027 0.0004 0.0000 

0 0 0 -40.4010 0.9987 0.0501 0.0050 0.0026 0.0004 0.0000 

-15 
0.16 0.16 0.64 -60.2670 0.9994 0.0334 0.0022 0.0012 0.0001 0.0000 

0 0 0 -60.2670 0.9994 0.0334 0.0022 0.0012 0.0001 0.0000 
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Table3.2. Shows the calculated values of the Correlation times fo r each separation as a function of the 

interaction strength tu 4/ . Correlation times  for arbitrary interaction strength tu 4/ 50 , 40and 30 . 

 
tu 4/  

 
Total 

Energy 

tEgEl /  

Angular 
description of 

lattice 
separation 

l  or dhv  

)(
l

y 
 

(radian) 

Collision Time for each separation 
( ondssec s ) 

)5,4,3,2,1( ll ; 0
0
  

1  
45

10




 

2  
45

10


  

3  
45

10


  

4  

45
10


  

5  

45
10


  

50 -8.3103 

1
v (

0
90 ) 1.5710 2.9498 -- -- -- -- 

1
h (

0
180 ) 3.1420 5.8996 -- -- -- -- 

2d (
0

45 ) 0.7855 -- 2.8767 -- -- -- 

3
v (

0
90 ) 1.5710 -- -- 8..0190 -- -- 

3
h (

0
180 ) 3.1420 -- -- 16.0380 -- -- 

4d (
0

63 )
 

1.0473 -- -- -- 7.2303 -- 

4d (
0

6.26 )
 

0.4643 -- -- -- 3.2054 -- 

5d (
0

45 ) 0.7855 -- -- -- -- 7.4755 

40 -8.3117 

1
v (

0
90 ) 1.5710 2.9570 -- -- -- -- 

1
h (

0
180 ) 3.1420 5.9140 -- -- -- -- 

2d (
0

45 ) 0.7855 -- 2.8776 -- -- -- 

3
v (

0
90 ) 1.5710 -- -- 8.0176 -- -- 

3
h (

0
180 ) 3.1420 -- -- 16.0354 -- -- 

4d (
0

63 )
 

1.0473 -- -- -- 7.2263 -- 

4d (
0

6.26 )
 

0.4643 -- -- -- 3.2036 -- 

5d (
0

45 ) 0.7855 -- -- -- -- 7.4688 

 
 
 

30 

-8.3139 

1
v (

0
90 ) 1.5710 2.9668 -- -- -- -- 

1
h (

0
180 ) 3.1420 5.9337 -- -- -- -- 

2d (
0

45 ) 0.7855 -- 2.8789 -- -- -- 

 

3
v (

0
90 ) 1.5710 -- -- 8.0156 -- -- 

3
h (

0
180 ) 3.1420 -- -- 16.0310 -- -- 

4d (
0

63 )
 

1.0473 -- -- -- 7.2187 -- 

4d (
0

6.26 )
 

0.4643 -- -- -- 3.2003 -- 

5d (
0

45 ) 0.7855 -- -- -- -- 7.4560 
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Table 3.3. c.t.d. Collision times for arbitrary interaction strength tu 4/ 20 ,10and 5 . 

 
tu 4/  

 
Total 

Energy 

tEgEl /  

Angular 
description of 

lattice 
separation 

l  or dhv  

)(
l

y 
 

(radian) 

Collision Time for each separation 
( ondssec s ) 

)5,4,3,2,1( ll ; 0
0
  

1  
45

10


  

2  
45

10


  

3  
45

10


  

4  

45
10


  

5  
45

10


  

 
20 

 
-8.3183 

1
v (

0
90 ) 1.5710 2.9874 -- -- -- -- 

1
h (

0
180 ) 3.1420 5.9748 -- -- -- -- 

2d (
0

45 ) 0.7855 -- 2.8808 -- -- -- 

3
v (

0
90 ) 1.5710 -- -- 8.0114 -- -- 

3
h (

0
180 ) 3.1420 -- -- 16.0226 -- -- 

4d (
0

63 )
 

1.0473 -- -- -- 7.2048 -- 

4d (
0

6.26 )
 

0.4643 -- -- -- 3.1942 -- 

5d (
0

45 ) 0.7855 -- -- -- -- 7.4328 

10 -8.3300 

1
v (

0
90 ) 1.5710 3.0399 -- -- -- -- 

1
h (

0
180 ) 3.1420 6.0798 -- -- -- -- 

2d (
0

45 ) 0.7855 -- 2.8856 -- -- -- 

3
v (

0
90 ) 1.5710 -- -- 7.9942 -- -- 

3
h (

0
180 ) 3.1420 -- -- 15.9886 -- -- 

4d (
0

63 )
 

1.0473 -- -- -- 7.1632 -- 

4d (
0

6.26 )
 

0.4643 -- -- -- 3.1757 -- 

5d (
0

45 ) 0.7855 -- -- -- -- 7.3666 

5.0 -8.3494 

1
v (

0
90 ) 1.5710 3.1220 -- -- -- -- 

1
h (

0
180 ) 3.1420 6.2440 -- -- -- -- 

2d (
0

45 ) 0.7855 -- 2.8900 -- -- -- 

3
v (

0
90 ) 1.5710 -- -- 7.9564 -- -- 

3
h (

0
180 ) 3.1420 -- -- 15.9130 -- -- 

4d (
0

63 )
 

1.0473 -- -- -- 7.0866 -- 

4d (
0

6.26 )
 

0.4643 -- -- -- 3.1417 -- 

5d (
0

45 ) 0.7855 -- -- -- -- 7.2507 
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Table 3.4. c. t. d. Collision times  for arbitrary interaction strength, tu 4/ 0.0 , 0.1 and 5.1 . 

 
tu 4/  

 
Total 

Energy 

tEgEl /  

Angular 
description of 

lattice 
separation 

l  or dhv  

)(
l

y 
 

(radian) 

Collision Time for each separation 
( ondssec s ) 

)5,4,3,2,1( ll ; 0
0
  

1

45
10


  

2  

45
10


  

3  

45
10


  

4  
45

10


  

5

45
10


  

0.0 -8.4877 

1
v (

0
90 ) 1.5710 3.4937 -- -- -- -- 

1
h (

0
180 ) 3.1420 6.9874 -- -- -- -- 

2d (
0

45 ) 0.7855 -- 2.7785 -- -- -- 

3
v (

0
90 ) 1.5710 -- -- 7.3516 -- -- 

3
h (

0
180 ) 3.1420 -- -- 14.7030 -- -- 

4d (
0

63 )
 

1.0473 -- -- -- 6.2836 -- 

4d (
0

6.26 )
 

0.4643 -- -- -- 2.7857 -- 

5d (
0

45 ) 0.7855 -- -- -- -- 6.1974 

-1.0 -8.7328 

1
v (

0
90 ) 1.5710 3.4901 -- -- -- -- 

1
h (

0
180 ) 3.1420 6.9802 -- -- -- -- 

2d (
0

45 ) 0.7855 -- 2.2916 -- -- -- 

3
v (

0
90 ) 1.5710 -- -- 5.7168 -- -- 

3
h (

0
180 ) 3.1420 -- -- 11.4338 -- -- 

4d (
0

63 )
 

1.0473 -- -- -- 4.5712 -- 

4d (
0

6.26 )
 

0.4643 -- -- -- 1.8126 -- 

5d (
0

45 ) 0.7855 -- -- -- -- 4.2381 

-1.5 -9.1847 

1
v (

0
90 ) 1.5710 2.9357 -- -- -- -- 

1
h (

0
180 ) 3.1420 5.8714 -- -- -- -- 

2d (
0

45 ) 0.7855 -- 1.5353 -- -- -- 

3
v (

0
90 ) 1.5710 -- -- 3.5302 -- -- 

3
h (

0
180 ) 3.1420 -- -- 7.0604 -- -- 

4d (
0

63 )
 

1.0473 -- -- -- 2.5377 -- 

4d (
0

6.26 )
 

0.4643 -- -- -- 1.1250 -- 

5d (
0

45 ) 0.7855 -- -- -- -- 2.1190 
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4.0 DISCUSSION OF RESULTS 

Upon comparing the matrices given by (2.23) and (2.24) it is obvious that the vertical and the horizontal gradient 

which we have introduced in the single band HM do not really make any significant contribution to the kinetic 

hopping of the two interacting electrons. Hence they do not have any influence on the diagonal elements of the 

matrix. This is simply because cos180
0 

(-1) and sin 90
0
(+1). It is therefore clear that only the diagonal gradient 

contained in the single band HM that makes absolute contribution to the interacting electrons. However, the 

introduction of the vertical and the horizontal parameter makes the gradient Hamiltonian model more general and 

well defined. 

It is shown in Table 3.1 that as the interaction strength between the two electrons is decreased the total energy 

possess by the electrons also decrease and this is consistent with the two models we have employed in this study. 

However, our present model which is the gradient Hamiltonian model yielded lower results of the variational total 

energy which is quite preferable since the electrons would prefer to settle down in the region of minimum 

potential. 

The table also revealed that for higher positive interaction strength the variational parameters for larger 

separations are greater than those of the lower ones.  This is a result of the fact that the electrons prefer to stay far 

apart as possible so that the probability of finding them close to one another is reduced. 

Also from the table we found that for lower negative interaction strength the variational parameters for larger 

separations are smaller than those of the lower ones.  Thus when the interaction strength is increased more 

negatively the two electrons now prefer to stay very close to one another instead of remaining far apart from one 

another. Hence the probability of finding the electrons close to one another is increased for high negative values 

of the interaction strength ( tu 4/ ). 

One remarkable result produced by our work is the values of the variational parameters obtained when the 

interaction strength between the two electrons is zero ( 04/ tu ). In this case, the variational parameters produced 

by the single band Hubbard model are the same, that is when 0 DHV  . This is shown in Table 3.1. The 

interpretation of this is that in the absence of interaction strength the two electrons have equal probability of being 

found on any of the lattice separations.   

However, the variational parameters produced by the gradient Hamiltonian model are not the same. The 

interpretation of this is that even in the absence of interaction strength or potential function 04/ tu  there is still 

an existing residual potential field between the two interacting electrons hence the unequal probability of being 

found on any of the lattice separations.   

It is clear from the table that the results for both models converge to the same value in the large negative U limit. 

Also the values of the total energies obtained corresponding to each of the interaction strength are negative and 

non degenerate. The negative values of the total energies show that the interaction between the two electrons is 

attractive and not repulsive.  
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It is clear from Tables 3.2, 3.3 and 3.4 that in the positive region of the interaction strength tu 4/ , the correlation 

time
1

 increases in value as the interaction strength is decreased, while it decreases in value when the interaction 

strength is made more negative. This condition is consistent for both vertical and horizontal gradient hopping of 

the two electrons. Also, the correlation time
2

 increases with respect to positive values of the interaction strength 

before it starts to decrease consistently around the value of 54/ tu .  

Finally the correlation times for
3

 , 
4

 and 
5

 consistently decreases for both regimes of positive and negative the 

interaction strength. However, the values of the correlation times in the negative regime are much lower than 

those in the positive regime. Thus generally, high negative interaction strength decreases the correlation time 

between electrons as they respond to the internal or external agitation forces.      

5.0 CONCLUSION 

In this work, we utilized two types of Hamiltonian model to study the behaviour of two interacting electrons on a 

two dimensional (2D) 5X5 square lattice. The Hamiltonian are the single band Hubbard model in which case 

0
dhv

ttt and the gradient Hamiltonian model that is, with the inclusion of v
t , h

t  and d
t . Obviously, the total 

energies of the two interacting electrons as a function of the interaction strength are consistently lower than those 

of the original single band Hubbard model. Thus the inclusion of the gradient parameters into the single band HM 

yielded better results of the ground-state energies. Hence the lower ground-state energy results produced by our 

new model are quite compactable with quantum requirements. Generally, it is established in this work that high 

negative interaction strength decreases the correlation time between the interacting electrons. Also our study 

revealed that both the single band HM and the gradient Hamiltonian model converge to the same values of total 

energies and variational parameters in the large negative values of the interaction strength. 
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