North Asian International Research Journal Consortium

- Worth Asian ®ntemational Ressarch Soumal

© f

Oscience, \&ugineering and ©information Technologe

Chief Editor
Dr. Bilal Ahmad Malik

Publisher
Dr. Bilal Ahmad Malik

Associate Editor
Dr.Nagendra Mani Trapathi

IRJIF IMPACT FACTOR: 3.821

NAIRJC JOURNAL PUBLICATION

Welcome to NAIRJC

ISSN NO: 2454-7514
North Asian International Research Journal of Science, Engineering \& Information Technology is a research journal, published monthly in English, Hindi. All research papers submitted to the journal will be double-blind peer reviewed referred by members of the editorial board. Readers will include investigator in Universities, Research Institutes Government and Industry with research interest in the general subjects

Editorial Board

M.C.P. Singh Head Information Technology Dr C.V. Rama University	S.P. Singh Department of Botany B.H.U. Varanasi.	A. K. M. Abdul Hakim Dept. of Materials and Metallurgical Engineering, BUET, Dhaka
Abdullah Khan Technology University of the Punjab	Vinay Kumar Department of Physics Shri Mata Vaishno Devi University Jammu	Rajpal Choudhary Dept. Govt. Engg. College Bikaner Rajasthan
Zia ur Rehman Department of Pharmacy PCTE Institute of Pharmacy Ludhiana, Punjab	Rani Devi Department of Physics University of Jammu	Moinuddin Khan Dept. of Botany SinghaniyaUniversity Rajasthan.
Manish Mishra Dept. of Engg, United College Ald.UPTU Lucknow	Ishfaq Hussain Dept. of Computer Science IUST, Kashmir	Ravi Kumar Pandey Director, H.I.M.T, Allahabad
Tihar Pandit Dept. of Environmental Science, University of Kashmir.	Abd El-Aleem Saad Soliman Desoky Dept of Plant Protection, Faculty of Agriculture, Sohag University, Egypt	M.N. Singh Director School of Science UPRTOU Allahabad
Mushtaq Ahmad Dept.of Mathematics Central University of of Kashmir	Nisar Hussain Dept. of Medicine A.I. Medical College (U.P) Kanpur University	M.Abdur Razzak Dept. of Electrical \& Electronic Engg. I.U Bangladesh

Address: -North Asian International Research Journal Consortium (NAIRJC) 221 Gangoo, Pulwama, Jammu and Kashmir, India - 192301, Cell: 09086405302, 09906662570, Ph. No: 01933-212815, Email: nairjc5@gmail.com, nairjc@nairjc.com, info@nairjc.com Website: www.nairjc.com

Existence and stability of Collinear libration point L_{3} in the Restricted Three Body problem when the Primaries are Triaxial Rigid Bodies and Source of Radiations, Perturbation Effects Act in Coriolis and Centrifugal forces.

B. K. MANDAL*
*Department of Mathematics, Govt. Women's Polytechnic, Bokaro, Jharkhand, India

ABSTRACT:

This paper deals with the stationary solutions of the collinear libration point L_{3} of the planar restricted three body problem when the primaries are triaxial rigid bodies and source of radiations, perturbation effects act in coriolis and centrifugal forces with one of the axes as the axis of symmetry and its equatorial plane coinciding with the plane of motion. It is seen that there are five libration points two triangular and three collinear. It is further obserbed that the collinear points are unstable, while the triangular points are stable for the mass parameter $0 \leq \mu<\mu_{\text {crit }}$ (the critical mass parameter). It is further seen that the triangular points have long or short periodic elliptical orbits in the same range of μ.

Key words: Restricted Three Body Problem: Libration Point; Rigid Body; Source of Radiations; Coriolis force; Centrifugal force.

1. INTRODUCTION:

It is well known that the classical planar restricted three body problem possesses five libration points, two triangular and three collinear. The collinear libration points L_{1}, L_{2}, L_{3} are unstable, while the two equilateral libration points $\mathrm{L}_{4}, \mathrm{~L}_{5}$ are stable for $\mu<\mu_{\text {crit }}=0.0385208965 \ldots \ldots \ldots$.... Szebehely. Winter showed that the stability of the two equilateral points is due to the existence of coriolis terms in the equations of motion written in a synodic co-ordinate system.

In recent times many perturbing forces i.e., oblateness and radiation forces of the primaries, coriolis and centrifugal forces, variation of the masses of the primaries and of the infinitesimal mass etc., have been included in the study of the restricted three body problem. In the case of restricted three body problem where both the primaries are oblate spheroids whose equatorial plane coincides with the plane of motion, the location of libration points and their stability in the Liapunov sense has been studied by Vidyakin. For the case, where the bigger
primary is an oblate spheroid whose equatorial plane coincides with the plane of motion, Subba Rao and Sharma have studied the stability of libration points. A similar problems has been studied by El-Shaboury. Khanna and Bhatnagar have studied the problem when the smaller primary is a triaxial rigid body.

Sharma, Taqvi and Bhatnagar have studied the problem when the bigger primary is a triaxial rigid body as well as source of radiation.

In this paper, we consider the primaries are triaxial rigid bodies and source of radiation, perturbation effects act in coriolis and centrifugal forces with one of the axes as the axis of symmetry and their equatorial plane coinciding with the plane of motion. Further we assume that the primaries are moving without rotation about their centre of mass in circular orbits. An attempt is made to study the existence and location of libration point L_{3}.

Mandal (2017) found stability of collinear libration point L_{3} in photo gravitational restricted problem of $2+2$ bodies when bigger primary is a triaxial rigid body perturbed by coriolis and centrifugal forces.

2. EQUATIONS OF MOTION

We shall adopt the notation and terminology of Szebehely. As a consequence, the distance between the primaries does not change and is taken equal to one; the sum of the masses of the primaries is also taken as one. The unit of time is so chosen as to make the gravitational constant unity. Using dimensionless variables, the equations of motion of the infinitesimal mas m_{3} in a synodic co-ordinate system (x, y) are
$\ddot{x}-2 n \dot{y}=\frac{\partial \Omega}{\partial x}$
and
$\ddot{y}-2 n \dot{x}=\frac{\partial \Omega}{\partial x}$,
where $\Omega=\sum_{i=1}^{2}\left[\frac{1}{2} n^{2} \mu_{i} r_{i}^{2}+(1-P i)\left\{\frac{\mu_{i}}{r_{i}}+\frac{\mu_{i}}{2 m_{i} r_{i}^{3}}\left(I_{1 i}+I_{2 i}+I_{3 i}-3 I_{i}\right\}\right]\right.$
McCusky
$\mu_{1}=1-\mu, \mu_{2}=\mu$
$r_{i}^{2}=\left(x-x_{i}\right)^{2}+y^{2}, \quad(i=1,2)$
$x_{1}=\mu, x_{2}=-1+\mu$
$p_{1}=\frac{\text { Radiation pressure due to bigger primary }}{\text { Gravitation force due to bigger primary }} \ll 1$.
$p_{2}=\frac{\text { Radiation pressure due to smaller primary }}{\text { Gravitation force due to smaller primary }} \ll 1$.

Here, we have applied effect of small perturbation in coriolis and centrifugal forces with the help of perturbations α and β the unperturbed value of both being unity
$\alpha=1+\epsilon,|\epsilon| \ll 1$
$\beta=1+\epsilon^{\prime},\left|\epsilon^{\prime}\right| \ll 1$

Hence Ω change to Ω^{\prime} the equilibrium points are obtained from equations
$\Omega^{\prime} x=\Omega^{\prime} y=0$.

Here μ is the ratio of the mass of the smaller primary to the total mass of the primaries and $0<\mu \leq \frac{1}{2}$. That is, $\mu=\frac{m_{2}}{m_{1}+m_{2}} \leq \frac{1}{2}$ with $m_{1} \geq m_{2}$ being the masses of the primaries.
$I_{1 i}, I_{2 i}, I_{3 i}(i=1,2)$ are the principal moments of inertia of the triaxial rigid body of mass $m_{i}(i=1,2)$ at its centre of mass, with $a_{i}, b_{i}, c_{i}(i=1,2)$ as lengths of its semi-axes. $I_{i}(i=1,2)$ is the moment of inertia about a line joining the centre of the rigid body of mass $m_{i}(i=1,2)$ and the infinitesimal body of mass m_{3} and is given by

$$
I_{i}=I_{1 i} l_{1 i}^{2}+I_{2 i} m_{1 i}^{2}+I_{3 i} n_{1 i}^{2}(i=1,2)
$$

where $l_{1 i}, m_{1 i}, n_{1 i}(i=1,2)$ are the direction cosines of the line with respect to its principal axes.

Here, we have also assumed that the principal axes of m_{1} and m_{2} are parallel to the synodic axes $O(x y z)$.

The axes $O(x y z)$ have been defined by Szebehely.

The mean motion, n, is given by
$n^{2}=1+\sum_{i=1}^{2} \frac{3}{2}\left(2 A_{1 i}-A_{2 i}-A_{3 i}\right)$,
where $\quad A_{1 i}=\frac{a_{i}^{2}}{5 R^{2}}, A_{2 i}=\frac{b_{i}^{2}}{5 R^{2}}, A_{3 i}=\frac{c_{i}^{2}}{5 R^{2}},(i=1,2)$
and R is the distance between the primaries.

Here we are neglecting the perturbation in the potential between m_{1} and m_{2} due to radiation pressure because m_{1} and m_{2} are supposed to be sufficiently large.
Ω in the eq. (2) can also be written as
$\Omega=\sum_{i=1}^{2}\left[\frac{1}{2} n^{2} \mu_{i} r_{i}^{2}+\frac{\mu_{i}}{r_{i}}+\frac{\mu_{i}}{2 r_{i}^{3}}\left(2 \sigma_{1 i}-\sigma_{2 i}\right)-\frac{3 \mu_{i}}{2 r_{i}^{5}}\left(\sigma_{1 i}-\sigma_{2 i}\right) y^{2}-P_{i} \frac{\mu_{i}}{r_{i}}\right]$
where $\sigma_{1 i}=A_{1 i}-A_{3 i}$ and $\sigma_{2 i}=A_{2 i}-A_{3 i}(i=1,2)$.
We assume that $\sigma_{1 i}$ and $\sigma_{2 i} \ll 1(i=1,2)$.
The mean motion gives in the eq. (4), becomes
$n^{2}=1+\sum_{i=1}^{2} \frac{3}{2}\left(2 \sigma_{1 i}-\sigma_{2 i}\right)$
It may be noted that the mean motion, n, is independent of the solar radiation pressure $p_{i}(i=1,2)$.

3. LOCATION OF LIBRATION POINT L_{3}

Equations (1) permits an integral analogous to Jacobi integral
$\dot{x}^{2}+\dot{y}^{2}-2 \Omega+C=0$

The libration points are the singularities of the manifold

$$
F(x, y, \dot{x}, \dot{y})=\dot{x}^{2}+\dot{y}^{2}-2 \Omega+C=0
$$

Therefore, these points are the solutions of the equations
$\Omega_{x}=0, \Omega_{y}=0$
For " L_{3} " coefficient of x^{3}
$L_{3}=x^{3}\left[-\frac{5}{2}(1-\mu)\left\{-\frac{1}{8}+\frac{3}{32 \mu}(4-\mu) \sigma_{1}-\frac{3}{32 \mu}(4+3 \mu) \sigma_{2}\right\} \times\left\{1+\frac{77}{8} \sigma_{1}-\frac{77}{8} \sigma_{2}+\frac{7}{3} \epsilon^{\prime}\right\}\right.$

$$
+\frac{3}{2}(1-\mu)\left\{-\frac{1}{2}+\frac{1}{8 \mu}(4-\mu) \sigma_{1}-\frac{1}{8 \mu}(4+3 \mu) \sigma_{2}\right\} \times\left\{1+\frac{55}{8} \sigma_{1}-\frac{55}{8} \sigma_{2}+\frac{5}{3} \epsilon^{\prime}\right\}
$$

$$
-\frac{5}{2} \mu\left\{\frac{1}{8}+\frac{3}{32 \mu}(4-\mu) \sigma_{1}-\frac{3}{32 \mu}(4+3 \mu) \sigma_{2}\right\} \times\left\{1+\frac{7}{3} \epsilon^{\prime}-\frac{7}{2 \mu}(1-3 \mu) \sigma_{1}-\frac{7}{2 \mu}(-1+2 \mu) \sigma_{2}\right\}
$$

$$
+\frac{3}{2} \mu\left\{\frac{1}{2}+\frac{1}{8 \mu}(4-\mu) \sigma_{1}-\frac{1}{8 \mu}(4+3 \mu) \sigma_{2}\right\} \times\left\{1+\frac{5}{3} \epsilon^{\prime}-\frac{5}{2 \mu}(1-3 \mu) \sigma_{1}-\frac{5}{2 \mu}(-1+2 \mu) \sigma_{2}\right\}
$$

$$
\left.+\frac{35}{32}(1-\mu) A_{1}-\frac{15}{8}(1-\mu) A_{1}+\frac{945}{128}(1-\mu) A_{2}-\frac{315}{32}(1-\mu) A_{2}\right]
$$

$=x^{3}\left[-\frac{7}{16}+\frac{7}{8} \mu+\sigma_{1}\left(-\frac{127}{64}+\frac{115 \mu}{32}-\frac{3}{16 \mu}\right)+\sigma_{2}\left(\frac{89}{64}-\frac{65 \mu}{32}+\frac{3}{16 \mu}\right)-\frac{25}{48} \epsilon^{\prime}+\frac{50}{48} \mu \epsilon^{\prime}\right]$
Coefficient of y^{3}

$$
\begin{aligned}
+y^{3}\left[-\frac{15 \sqrt{3}}{16}\right. & (1-\mu)\left\{1-\frac{4}{3} \epsilon^{\prime}+\frac{1}{4 \mu}(4-23 \mu) \sigma_{1}+\frac{1}{4 \mu}(-4+19 \mu) \sigma_{2}\right\} \times\left\{1+\frac{77}{8} \sigma_{1}-\frac{77}{8} \sigma_{2}+\frac{7}{3} \epsilon^{\prime}\right\}+\frac{3 \sqrt{3}}{4} \\
& \times(1-\mu)\left\{1-\frac{4}{9} \epsilon^{\prime}+\frac{1}{12 \mu}(4-23 \mu) \sigma_{1}+\frac{1}{12 \mu}(-4+19 \mu) \sigma_{2}\right\} \times\left\{1+\frac{55}{8} \sigma_{1}-\frac{55}{8} \sigma_{2}+\frac{5}{3} \epsilon^{\prime}\right\} \\
& -\frac{15 \sqrt{3}}{16} \times \mu\left\{1-\frac{4}{3} \epsilon^{\prime}+\frac{1}{4 \mu}(4-23 \mu) \sigma_{1}+\frac{1}{4 \mu}(-4+19 \mu) \sigma_{2}\right\} \\
& \times\left\{1+\frac{7}{3} \epsilon^{\prime}-\frac{7}{2 \mu}(1-3 \mu) \sigma_{1}-\frac{7}{2 \mu}(-1+2 \mu) \sigma_{2}\right\}+\frac{3 \sqrt{3}}{4} \\
& \times \mu\left\{1-\frac{4}{9} \epsilon^{\prime}+\frac{1}{12 \mu}(4-23 \mu) \sigma_{1}+\frac{1}{12 \mu}(-4+19 \mu) \sigma_{2}\right\} \\
& \times\left\{1+\frac{5}{3} \epsilon^{\prime}-\frac{5}{2 \mu}(1-3 \mu) \sigma_{1}-\frac{5}{2 \mu}(-1+2 \mu) \sigma_{2}\right\}-\frac{105 \sqrt{3}}{32} \times A_{1}(1-\mu)+\frac{15 \sqrt{3}}{8} \times A_{1}(1-\mu) \\
& -\frac{15 \sqrt{3}}{4} A_{2}(1-\mu)+\frac{315 \sqrt{3}}{16} A_{2}(1-\mu)-\frac{15 \sqrt{3}}{4} A_{2}(1-\mu)-\frac{2835 \sqrt{3}}{128} A_{2}(1-\mu) \\
& \left.+\frac{315 \sqrt{3}}{32} A_{2}(1-\mu)\right]
\end{aligned}
$$

IRJIF IMPACT FACTOR: 3.821

$$
=y^{3}\left[\frac{-3 \sqrt{3}}{16}-\frac{\sqrt{3}}{48} \epsilon^{\prime}+\frac{11 \sqrt{3} \mu}{36} \epsilon^{\prime}+\sigma_{1}\left(\frac{-77 \sqrt{3}}{64}+\frac{75 \sqrt{3}}{32} \mu-\frac{22 \sqrt{3}}{32 \mu}\right)+\sigma_{2}\left(\frac{31 \sqrt{3}}{64}-\frac{75 \sqrt{3}}{32} \mu+\frac{22 \sqrt{3}}{32 \mu}\right)\right]
$$

Coefficient of $x^{2} y$

$$
x^{2} y\left[-\frac{6 \sqrt{3}}{32}+\sigma_{1}\left(\frac{23 \sqrt{3}}{64}-\frac{195 \sqrt{3} \mu}{32}+\frac{58 \sqrt{3}}{32 \mu}\right)+\sigma_{2}\left(-\frac{229 \sqrt{3}}{64}+\frac{315 \sqrt{3} \mu}{32}-\frac{58 \sqrt{3}}{32 \mu}\right)+\frac{11}{12} \sqrt{3} \epsilon^{\prime}+\frac{255 \mu \epsilon^{\prime}}{144}\right]
$$

Coefficient of $x y^{2}$
$x y^{2}\left[\frac{3}{32}\left\{22-44 \mu+\sigma_{1}\left(\frac{231}{2}-205 \mu-\frac{2}{\mu}\right)+\sigma_{2}\left(-\frac{57}{2}+75 \mu+\frac{2}{\mu}\right)+\frac{405}{144} \epsilon^{\prime}-\frac{405}{72} \mu \epsilon^{\prime}\right\}\right]$
hence

$$
\begin{aligned}
L_{3}=x^{3}\left[-\frac{7}{16}\right. & \left.+\frac{7}{8} \mu+\sigma_{1}\left(-\frac{127}{64}+\frac{115 \mu}{32}-\frac{3}{16 \mu}\right)+\sigma_{2}\left(\frac{89}{64}-\frac{65 \mu}{32}+\frac{3}{16 \mu}\right)-\frac{25}{48} \epsilon^{\prime}+\frac{50}{48} \mu \epsilon^{\prime}\right] \\
& +y^{3}\left[\frac{-3 \sqrt{3}}{16}-\frac{\sqrt{3}}{48} \epsilon^{\prime}+\frac{11 \sqrt{3} \mu}{36} \epsilon^{\prime}+\sigma_{1}\left(\frac{-77 \sqrt{3}}{64}+\frac{75 \sqrt{3}}{32} \mu-\frac{22 \sqrt{3}}{32 \mu}\right)\right. \\
& \left.+\sigma_{2}\left(\frac{31 \sqrt{3}}{64}-\frac{75 \sqrt{3}}{32} \mu+\frac{22 \sqrt{3}}{32 \mu}\right)\right] \\
& +x^{2} y\left[-\frac{6 \sqrt{3}}{32}+\sigma_{1}\left(\frac{23 \sqrt{3}}{64}-\frac{195 \sqrt{3} \mu}{32}+\frac{58 \sqrt{3}}{32 \mu}\right)+\sigma_{2}\left(-\frac{229 \sqrt{3}}{64}+\frac{315 \sqrt{3} \mu}{32}-\frac{58 \sqrt{3}}{32 \mu}\right)+\frac{11}{12} \sqrt{3} \epsilon^{\prime}\right. \\
& \left.+\frac{255 \mu \epsilon^{\prime}}{144}\right] \\
& +x y^{2}\left[\frac{3}{32}\left\{22-44 \mu+\sigma_{1}\left(\frac{231}{2}-205 \mu-\frac{2}{\mu}\right)+\sigma_{2}\left(-\frac{57}{2}+75 \mu+\frac{2}{\mu}\right)+\frac{405}{144} \epsilon^{\prime}-\frac{405}{72} \mu \epsilon^{\prime}\right\}\right]
\end{aligned}
$$

4. STABILITY OF COLLINEAR LIBRATION POINT L_{3}

First we consider the point lying in $(\mu-2, \mu-1)$.
For this point, $r_{2}<1, r_{1}>1$, we have
$\Omega^{\prime} x^{\circ} y=\frac{3 \sqrt{3}}{2}\left[\mu-\frac{1}{2}+\frac{11}{18} \epsilon^{\prime}(2 \mu-1)+\frac{\sigma_{1}}{24 \mu}\left(8-47 \mu+89 \mu^{2}\right)+\frac{\sigma_{2}}{24 \mu}\left(-8+9 \mu-37 \mu^{2}\right)\right.$
$\Omega^{\prime} x^{\circ} x=\frac{3}{4}+\frac{5}{4} \epsilon^{\prime}+\frac{3}{16 \mu} \sigma_{1}\left(15 \mu^{2}-8+19 \mu\right)+\frac{3}{16 \mu} \sigma_{2}\left(-31 \mu^{2}+8-\mu\right)>0$
$\Omega^{\prime} y^{\circ} y=\frac{9}{4}+\frac{7}{4} \epsilon^{\prime}+\frac{3}{16 \mu} \sigma_{1}\left(8+29 \mu-15 \mu^{2}\right)+\frac{3}{16 \mu} \sigma_{2}\left(-8-7 \mu+15 \mu^{2}\right)<0$

Similarly, for the points lying in $(\mu-1,0)$ and $(\mu, \mu+1)$
$\Omega^{\prime} x^{\circ} y=0, \quad \Omega^{\prime} x^{\circ} x>0$ and $\Omega^{\prime} y^{\circ} y<0$
Because $\Omega^{\prime} x^{\circ} x \Omega^{\prime} y^{\circ} y-\left(\Omega^{\prime} x^{\circ} y\right)^{2}<0$

The discriminant is positive and the four roots of the characteristic equation can be written as $\lambda_{1}=s, \lambda_{2}=-s$, $\lambda_{3}=$ it and $\lambda_{4}=$-it (s and tare real) so the motion around the collinear points is unbounded and consequently the collinear points are unstable.

5. CONCLUSION:

In the restricted three body problems, when the primaries are triaxial rigid bodies as well as source of radiations, perturbation effects act in coriolis and centrifugal forces. There are five libration points, three collinear and two triangular. The collinear points are unstable for all values of the mass parameter μ. Such that $0<\mu \leq \frac{1}{2}$ and the triangular points are stable for $\mu<\mu_{\text {crit }}$.

REFERENCES:

1. P.V.Subba Rao and R.K.Sharma, Astron, Astrophys, 43 (1975), 381
2. M.Khanna and K.B.Bhatnagar, Indian J.Pure appl. math 29(10), 1998.
3. R.K. Sharma, Z.A. Taquvi and K.B.Bhatnagar. Indian J.Pure appl. math 32(2) 255-266 February 2001.
4. D.N.Garain, B.K.Mandal and S.N.Adhikary (2007), Triangular equilibrium points and stability in the restricted three bodies when bigger primary is a triaxial rigid body and perturbation effects act in coriolis and centrifugal forces ARJPS 10 (1-2) 2007, pp, 27-31
5. B.K.Mandal (2017) IJRDT vollume-7, issue 4 April 2017 pp. 46-50.

Publish Research Article

Dear Sir/Mam,
We invite unpublished Research Paper,Summary of Research Project,Theses,Books and Book Review for publication.

Address:- North Asian International Research Journal Consortium (NAIRJC) 221, Gangoo Pulwama - 192301
Jammu \& Kashmir, India
Cell: 09086405302, 09906662570,
Ph No: 01933212815
Email:- nairjc5@gmail.com, nairjc@nairjc.com,info@nairjc.com
Website: www.nairjc.com

