North Asian International Research Journal Consortium

Ororth Asian ®nternational Ressarch Sournal

©f

Oscience, \&ugineering and ©information Technologe

Chief Editor
Dr. Bilal Ahmad Malik

Publisher
Dr. Bilal Ahmad Malik

Associate Editor
Dr.Nagendra Mani Trapathi

IRJIF IMPACT FACTOR: $\mathbf{3 . 8 2 1}$

NAIRJC JOURNAL PUBLICATION

Welcome to NAIRJC

ISSN NO: 2454-7514
North Asian International Research Journal of Science, Engineering \& Information Technology is a research journal, published monthly in English, Hindi. All research papers submitted to the journal will be double-blind peer reviewed referred by members of the editorial board. Readers will include investigator in Universities, Research Institutes Government and Industry with research interest in the general subjects

Editorial Board

M.C.P. Singh Head Information Technology Dr C.V. Rama University	S.P. Singh Department of Botany B.H.U. Varanasi.	A. K. M. Abdul Hakim Dept. of Materials and Metallurgical Engineering, BUET, Dhaka
Abdullah Khan Technology University of the Punjab	Vinay Kumar Department of Physics Shri Mata Vaishno Devi University Jammu	Rajpal Choudhary Dept. Govt. Engg. College Bikaner Rajasthan
Zia ur Rehman Department of Pharmacy PCTE Institute of Pharmacy Ludhiana, Punjab	Rani Devi Department of Physics University of Jammu	Moinuddin Khan Dept. of Botany SinghaniyaUniversity Rajasthan.
Manish Mishra Dept. of Engg, United College Ald.UPTU Lucknow	Ishfaq Hussain Dept. of Computer Science IUST, Kashmir	Ravi Kumar Pandey Director, H.I.M.T, Allahabad
Tihar Pandit Dept. of Environmental Science, University of Kashmir.	Abd El-Aleem Saad Soliman Desoky Dept of Plant Protection, Faculty of Agriculture, Sohag University, Egypt	M.N. Singh Director School of Science UPRTOU Allahabad
Mushtaq Ahmad Dept.of Mathematics Central University of Kashmir	Nisar Hussain Dept. of Medicine A.I. Medical College (U.P) Kanpur University	M.Abdur Razzak Dept. of Electrical \& Electronic Engg. I.U Bangladesh

Address: -North Asian International Research Journal Consortium (NAIRJC) 221 Gangoo, Pulwama, Jammu and Kashmir, India - 192301, Cell: 09086405302, 099066662570, Ph. No: 01933-212815, Email: nairjc5@gmail.com, nairjc@nairjc.com, info@nairjc.com Website: www.nairjc.com

SIMULTANEOUS QUADRUPLE SERIES EQUATIONS INVOLVING KONHAUSER BIORTHOGONAL POLYNOMIALS

INDU SHUKLA*
*Research scholar, Department of Physical science, M.G.C.G.V., Chitrakoot, Satna, M.P. (India)

ABSTRACT:

Spencer and Fano [11] used the biorthogonal polynomials (for the case of $k=2$) in carrying out calculations involving penetration of gamma rays through matter. In the present paper an exact solution of simultaneous quadruple series equations involving Konhauser - biorthogonal polynomials of first kind of different indices is obtained by multiplying factor technique due to Noble [13]. This technique has been modified by Thakare [12] to solve dual series equations involving orthogonal polynomials which led to disprove a possible conjecture of Askey [6] that dual series equations involving Jacobi polynomials of different indices cannot be solved. In this paper the solution of simultaneous quadruple series equations involving generalized Laguerre polynomials also have been discussed in a particular case.

Keywords: Basic orthogonal polynomials, General Theory, Orthogonal functions and polynomials, Fractional derivatives and integrals, Laguree polynomials, Konhauser bi-orthogonal polynomials.

Mathematics Subject Classification: 33C45, 42C05, 33D45, 26 A 33.

1. INTRODUCTION

Konhauser [8] introduced a pair of sets of bi-orthogonal polynomials $Z_{n}^{\alpha}(x: k)$ and $Y_{n}^{\alpha}(x: k)$ with respect to the weight function $x^{\alpha} \exp (-x)$ over the interval $(0, \infty)$ based on the study of Preiser [10]. In fact Konhauser defined:

$$
\begin{gathered}
Z_{n}^{\alpha}(x: k)=\frac{\Gamma(k n+\alpha+1)}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{x^{k j}}{\Gamma(k j+\alpha+1)} \\
\text { And } \\
Y_{n}^{\alpha}(x: k)=\frac{1}{n!} \sum_{p=0}^{n} \frac{x^{p}}{p!} \sum_{q=0}^{p}(-1)^{q}\binom{p}{q}\left[\frac{q+\alpha+1}{k}\right]_{n}
\end{gathered}
$$

$Z_{n}^{\alpha}(x: k)$ is called Konhauser - biorthogonal set of the first kind and $Y_{n}^{\alpha}(x: k)$ the Konhauser - biorthogonal set of the second kind. For $\mathrm{k}=1$, both the polynomials reduce to the generalized Laguerre polynomials $L_{n}^{\alpha}(x)$.

2. SIMULTANEOUS QUADRUPLE SERIES EQUATIONS

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{j=1}^{S} a_{i j} \frac{A_{n j}}{\Gamma(k n i+\alpha+p+1)} Z_{n i+p}^{\alpha}(x: k)=u_{i}(x), \quad 0 \leq x<a \tag{1.1}\\
& \sum_{n=0}^{\infty} \sum_{j=1}^{S} b_{i j} \frac{A_{n j}}{\Gamma(k n i+\delta+p+\beta)} Z_{n i+p}^{\beta+\delta-1}(x: k)=v_{i}(x), \quad a<x<b \tag{1.2}\\
& \sum_{n=0}^{\infty} \sum_{j=1}^{S} b_{i j} \frac{A_{n j}}{\Gamma(k n i+\delta+p+\beta)} Z_{n i+p}^{\beta+\delta-1}(x: k)=w_{i}(x), \quad b<x<c \tag{1.3}\\
& \sum_{n=0}^{\infty} \sum_{j=1}^{S} c_{i j} \frac{A_{n j}}{\Gamma(k n i+\delta+p+\beta)} Z_{n i+p}^{\sigma}(x: k)=y_{i}(x), \quad c<x<\infty \tag{1.4}
\end{align*}
$$

Where $Z_{n}^{\alpha}(x: k)$ is the Konhauser- biorthogonal polynomials, $u_{i}(x), v_{i}(x) w_{i}(x)$ and $y_{i}(x)$ are prescribed functions, $a_{i j}, b_{i j}$, and $c_{i j}$ are known constants for $i=1,2, \ldots \ldots s$. and $j=1,2, \ldots \ldots s . \beta+\delta+m>\alpha+1>0$ and $\sigma+1>\beta+\delta>0$, m being some positive integer and p is a non- negative integer. $A_{n j}$'s are the unknown constant for $j=1,2, \ldots . s$. in the series equations which are to be determine.

3. RESULTS USED IN THE SEQUEL

During the course of analysis the following results shall be needed:
(i) Biorthogonal relation was given by Konhauser [7] as follows:

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x} x^{\alpha} Z_{n}^{\alpha}(x: k) Y_{m}^{\alpha}(x: k) d x=\frac{\Gamma(k n+\alpha+1)}{n!} \delta_{m}^{n} \tag{2.1}
\end{equation*}
$$

where δ_{m}^{n} is Kranecker's delta.
(ii) Prabhakar [9] introduced the following $\mathrm{m}^{\text {th }}$ differential form:

$$
\begin{equation*}
\frac{d^{m}}{d x^{m}}\left[x^{\alpha+m} z_{n}^{\alpha+m}(x ; k)\right]=\frac{\Gamma(k n+\alpha+m+1)}{\Gamma(k n+\alpha+1)} x^{\alpha} z_{n}^{\alpha}(x ; k) \tag{2.2}
\end{equation*}
$$

with $\alpha>-1$.
(iii) Prabhakar [9] introduced the following fractional integrals, the first being the Riemann-Liouville fractional integral:

$$
\begin{equation*}
\int_{0}^{\xi}(\xi-x)^{\beta-1} x^{\alpha} Z_{n}^{\alpha}(x: k) d x=\frac{\Gamma(k n+\alpha+1) \Gamma(\beta)}{\Gamma(k n+\alpha+\beta+1)} \xi^{\alpha+\beta} Z_{n}^{\alpha+\beta}(\xi ; k) \tag{2.3}
\end{equation*}
$$

when $\beta>0, \alpha+\beta+1>0$ and the second, the Weyl fractional integral

$$
\begin{equation*}
\int_{\xi}^{\infty}(x-\xi)^{\beta-1} e^{-x} Z_{n}^{\alpha}(x: k) d x=\Gamma(\beta) \cdot e^{-\xi} Z_{n}^{\alpha-\beta}(\xi ; k) \tag{2.4}
\end{equation*}
$$

where $\alpha+1>\beta>0$.

4. THE SOLUTION OF QUADERUPLE SERIES EQUATIONS

Multiplying both the sides of the equation (1.1) by $x^{\alpha}(\xi-x)^{-\alpha+\beta+\delta+m-2}$ and integrating with respect to x over $(0, \xi)$ and first fractional integral formula (2.3) we get,

$$
\begin{gather*}
\sum_{n=0}^{\infty} \sum_{j=1}^{s} a_{i j} \frac{A_{n j} \Gamma(-\alpha+\beta+\delta+m-1)}{\Gamma(k n i+\beta+p+\delta+m)} \xi^{\beta+\delta+m-1} Z_{n i+p}^{\beta+\delta+m-1}(\xi ; k) \\
=\int_{0}^{\xi} x^{\alpha}(\xi-x)^{-\alpha+\beta+\delta+m-2} u_{i}(x) d x \\
\sum_{n=0}^{\infty} \sum_{j=1}^{s} a_{i j} \frac{A_{n j}}{\Gamma(k n i+\beta+p+\delta+m)} Z_{n i+p}^{\beta+\delta+m-1}(\xi ; k) \\
=\frac{\xi^{-\beta-\delta-m+1}}{\Gamma(-\alpha+\beta+\delta+m-1)} \int_{0}^{\xi} x^{\alpha}(\xi-x)^{-\alpha+\beta+\delta+m-2} u_{i}(x) d x \tag{3.2}
\end{gather*}
$$

with $0<x<\xi$ and $\beta+\delta+m>\alpha+1>0$.

Now multiplying both sides of equation (3.2) by $\xi^{\beta+\delta+m-1}$ and differentiating both sides ' m ' times with respect to ξ and using the derivative formula (2.2) we get,

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{j=1}^{S} b_{i j} \frac{A_{n j}}{\Gamma(k n i+\beta+p+\delta)} Z_{n i+p}^{\beta+\delta-1}(\xi ; k)=\sum_{j=1}^{S} f_{i j} \frac{\xi^{-\beta-\delta+1}}{\Gamma(-\alpha+\beta+\delta+m-1)} \boldsymbol{U}_{i}(\xi) \\
& \quad 0<\xi<a \tag{3.3}
\end{align*}
$$

where $\boldsymbol{U}_{i}(\xi)=\frac{d^{m}}{d x^{m}} \int_{0}^{\xi} x^{\alpha}(\xi-x)^{-\alpha+\beta+\delta+m-2} u_{i}(x) d x$

$$
\begin{equation*}
i=1,2, \ldots . . s \tag{3.4}
\end{equation*}
$$

and $f_{i j}$ are the elements of the matrix $\left[b_{i j}\right]\left[a_{i j}\right] .^{-1}$

Next multiplying both sides of equation (1.4) by $e^{-x}(x-\xi)^{\sigma-\beta-\delta}$ and integrate with respect to x over (ξ, ∞) and using the second fractional integral formula (2.4) we get,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{j=1}^{S} c_{i j} \frac{A_{n j} \Gamma(\sigma-\beta-\delta+1)}{\Gamma(k n i+\delta+p+\beta)} e^{-\xi} Z_{n i+p}^{\delta+\beta-1}(\xi: k)=\int_{\xi}^{\infty} e^{-x}(x-\xi)^{\sigma-\beta-\delta} Z_{i}(x) d x \tag{3.5}
\end{equation*}
$$

which can be written as,

$$
\begin{gather*}
\sum_{n=0}^{\infty} \sum_{j=1}^{s} c_{i j} \frac{A_{n j}}{\Gamma(k n i+\delta+p+\beta)} Z_{n i+p}^{\delta+\beta-1}(\xi: k) \\
=\frac{e^{\xi}}{\Gamma(\sigma-\beta-\delta+1)} \int_{\xi}^{\infty} e^{-x}(x-\xi)^{\sigma-\beta-\delta} z_{i}(x) d x \tag{3.6}
\end{gather*}
$$

Where $\xi<x<\infty$ and $\sigma+1>\beta+\delta>0$.
From equation (3.6), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{j=1}^{S} b_{i j} \frac{A_{n j}}{\Gamma(k n i+\beta+p+\delta)} Z_{n i+p}^{\beta+\delta-1}(\xi ; k)=\sum_{j=1}^{S} g_{i j} \frac{e^{\xi}}{\Gamma(\sigma-\beta-\delta+1)} Z_{i}(\xi) \quad c<\xi<\infty \tag{3.7}
\end{equation*}
$$

where $Z_{i}(\xi)=\int_{\xi}^{\infty} e^{-x}(x-\xi)^{\sigma-\delta-\beta} z_{i}(x) d x \quad ; i=1,2, \ldots . s$.
and $g_{i j}$ are the elements of the matrix $\left[b_{i j}\right]\left[c_{i j}\right] . .^{-1}$

Now left hand sides of the equations (1.2), (1.3), (3.3), (3.7) are identical. Applying the biorthogonal relation (2.1) of konhauser polynomials, we get the solution of the simultaneous quadruple series equations in the form,

$$
\begin{gathered}
A_{n j}=\sum_{j=1}^{s} q_{i j}(n i+p)!\left[\sum_{j=1}^{s} \frac{f_{i j}}{\Gamma(-\alpha+\beta+\delta+m-1)} \int_{0}^{a} e^{-\xi} \gamma_{n i+p}^{\beta+\delta-1}(\xi ; k) \boldsymbol{U}_{i}(\xi) d \xi\right. \\
+\int_{a}^{b} e^{-\xi} e^{\beta+\delta-1} \gamma_{n i+p}^{\beta+\delta-1}(\xi ; k) v_{i}(\xi) d \xi+\int_{b}^{c} e^{-\xi} e^{\beta+\delta-1} \gamma_{n i+p}^{\beta+\delta-1}(\xi ; k) w_{i}(\xi) d \xi \\
\left.+\sum_{j=1}^{s} \frac{g_{i j}}{\Gamma(\sigma-\beta-\delta+1)} \int_{c}^{\infty} e^{\beta+\delta-1} \gamma_{n i+p}^{\beta+\delta-1}(\xi ; k) Z_{i}(\xi) d \xi\right]
\end{gathered}
$$

Where $q_{i j}$ are the elements of the matrix $\left[b_{i j}\right]^{-1}$ and $n=0,1,2, \ldots \ldots$. and $j=1,2, \ldots . s$. and $\boldsymbol{U}_{i}(\xi)$ and $\boldsymbol{Z}_{i}(\xi)$ are defined by (3.4) and (3.8) respectively.

5. PARTICULAR CASE

It is very interesting for if we put $\mathrm{k}=1$ in equations (1.1), (1.2), (1.3), (1.4) then Konhauser polynomials involved in these equations are reduced to generalized Laguerre polynomials and we receive the following simultaneous quadruple series equations involving generalized Laguerre polynomials.

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} \sum_{j=1}^{S} a_{i j} \frac{A_{n j}}{\Gamma(k n i+\alpha+p+1)} L_{n i+p}^{\alpha}(x)=f_{i}(x), & 0 \leq x<a \\
\sum_{n=0}^{\infty} \sum_{j=1}^{S} b_{i j} \frac{A_{n j}}{\Gamma(k n i+\delta+p+\beta)} L_{n i+p}^{\beta+\delta-1}(x)=g_{i}(x), & a<x<b \\
\sum_{n=0}^{\infty} \sum_{j=1}^{S} b_{i j} \frac{A_{n j}}{\Gamma(k n i+\delta+p+\beta)} L_{n i+p}^{\beta+\delta-1}(x)=h_{i}(x), & b<x<c \\
\sum_{n=0}^{\infty} \sum_{j=1}^{S} c_{i j} \frac{A_{n j}}{\Gamma(k n i+\delta+p+\beta)} L_{n i+p}^{\sigma}(x)=j_{i}(x), & c<x<\infty \tag{4.4}
\end{array}
$$

with the solution in the form,

$$
\begin{gathered}
A_{n j}=\sum_{j=1}^{s} q_{i j}(n i+p)!\left[\sum_{j=1}^{s} \frac{f_{i j}}{\Gamma(-\alpha+\beta+\delta+m-1)} \int_{0}^{a} e^{-\xi} L_{n i+p}^{\beta+\delta-1}(\xi ; k) \boldsymbol{U}_{i}(\xi) d \xi\right. \\
+\int_{a}^{b} e^{-\xi} e^{\beta+\delta-1} L_{n i+p}^{\beta+\delta-1}(\xi ; k) v_{i}(\xi) d \xi+\int_{b}^{c} e^{-\xi} e^{\beta+\delta-1} L_{n i+p}^{\beta+\delta-1}(\xi ; k) w_{i}(\xi) d \xi \\
\left.+\sum_{j=1}^{s} \frac{g_{i j}}{\Gamma(\sigma-\beta-\delta+1)} \int_{c}^{\infty} e^{\beta+\delta-1} L_{n i+p}^{\beta+\delta-1}(\xi ; k) Z_{i}(\xi) d \xi\right]
\end{gathered}
$$

where $q_{i j}$ are the elements of the matrix $\left[b_{i j}\right]^{-1}$ and $n=0,1,2, \ldots \ldots$. and $j=1,2, \ldots . s$. and $\boldsymbol{U}_{i}(\xi)$ and $\boldsymbol{Z}_{i}(\xi)$ are defined by (3.4) and (3.8) respectively when $\mathrm{k}=1$.

ACKNOWLEDGEMENT

Author is thankful to Dr. A.P. Dwivedi for his co-operation \& support provided to me during the preparation of this paper. Author is also thankful to Dr. Brajesh Mishra for his support.

BIBLIOGRAPHY

1. Kuldeep Narain, "certain simultaneous quadruple Series Equations"; SCIRJ 1, 50-53 (2013).
2. Kuldeep Narain, "certain simultaneous triple Series Equations involving Laguerre polynomials"; Mathematical Theory and Modelling; 3, 129-131(2013).
3. P.K.Mathur, "Simultaneous Triple Series Equations Involving Konhauser Biorthogonal Polynomials", IOSRJM, 6, 42-45 (2013).
4. P.K. Mathur, Anjana Singh, "certain simultaneous five tuple Series equations involving Laguerre polynomials"; ULT.SCI OF PHY. SCIENCES, 24, 419-423 (2012).
5. H.M. Srivastava., "Dual Series relation involving Generalized Laguree Polynomials", J. math. Anal Appl; 31, 587-594 (1970).
6. Askey, Richard , "Dual Equations and Classical orthogonal Polynomials J.math. anal. applic. 24, 677685(1968).
7. J.D.E. Konhausure, "Some properties of biorthogonal polynomials", Ibid, 11, 242-260 (1965).
8. J.D.E. Konhausure,"Biorthogonal polynomials suggested by the Laguerre polynomials", Pacific J. math, 21, 303-314(1967).
9. K.R. Patil, N.K. Thakare, "Certain Dual series equations involving the Konhasure Orthogonal polynomials", J.maths.Phys., 18,1724-1726 (1977).
10. T.R. Prabhakar, "on a set of polynomials suggested by Lagurre polynomials", Pacific J. math, 35, 213-219 (1970).
11. L. Spencer, U. Fano, "Penetration and diffusion of X- rays, Calculation of spatial distributions by polynomial expansion", J. Res. natn. Bur. Std., 46, 446-461(1951).
12. N.K. Thakare, "Remarks on Dual series equation involving orthogonal Polynomials", J. Shivaji Univ., 5, 6772(1972).
13. B. Noble, "Some dual series equations suggested by the Laguerree Polynomials", J.Math., 21, 303-314 (1967).

Publish Research Article

Dear Sir/Mam,
We invite unpublished Research Paper,Summary of Research Project,Theses,Books and Book Review for publication.

Address:- North Asian International Research Journal Consortium (NAIRJC) 221, Gangoo Pulwama - 192301
Jammu \& Kashmir, India
Cell: 09086405302, 09906662570,
Ph No: 01933212815
Email:- nairjc5@gmail.com, nairjc@nairjc.com,info@nairjc.com
Website: www.nairjc.com

