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ABSTRACT: 

In this paper we introduce the concepts of partial vector-ρ
-
 η convexity and its generalizations for a vector 

valued function. We establish sufficient optimality conditions and duality results for generalized minimax 

Multi-objective fractional programming problem involving locally Lipschitz functions under non 

differentiable conditions. Moreover, the main feature of the present work is to point out that it is not 

necessary to impose vector-ρ  - η convexity vector-ρ  - η convexity assumptions on all components of vector 

valued functions involved in the problem to develop duality results. It is sufficient to impose these 

conditions only on few components. In this section, with the help of (EPv), we introduce dual (FD) to the 

problem (FP) and under suitable vector-ρ  - η convexity assumptions and also duality results relating to 

(EPv) and (FD). To establish the optimality conditions and duality, we shall make use of problem (FPv). 

 

1. INTRODUCTION: 

In mathematical programming we are faced with the problem of finding optimality criteria these criteria 

may be necessary/sufficient conditions. Bazara et al. [14] obtain optimality criteria without differentiability.  

Hanson [41] introduced the concept of invexity as broad generalizations of convexity. Jeyakumar [49] introduced 

ρ  -Invex functions and studied various results for a single objective nonlinear programming problem. Mond and 

Jeyakumar [48] have introduced the notion of V-invexity for a vector function. Recently, Bector et al. [20] 

developed sufficient optimality conditions and established duality results under V-invexity type of assumptions 

on the objective and constraint functions. They worked under differentiability assumptions. Bhatia and Garg [13] 

introduced V-ρ  -Invexity for non smooth functions and established duality results for multi-objective 

programming problem. Davinder Bhatia and Hitesh Arora [24] introduced partial vector invexity in fractional 

minimax programming problem. But no serious attempt made in utilizing the recent developed concepts like 
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vector η convexity and vector-ρ  - η convexity for non smooth functions in multi-objective fractional 

programming problem. Hence in this chapter an attempt is made to fill the gap in this aim of research by 

developing some theorems and methods to solve vector η convexity and vector-ρ  - η convexity for non smooth 

functions in multi-objective fractional programming problem. 

In this paper, we introduce the concepts of partial vector-ρ
-
 η convexity and its generalizations for a 

vector valued function. We establish sufficient optimality conditions and duality results for generalized minimax 

Multiobjective fractional programming problem involving locally Lipschitz functions under non differentiable 

conditions. Moreover, the main feature of the present work is to point out that it is not necessary to impose 

vector-ρ  - η convexity vector-ρ  - η convexity assumptions on all components of vector valued functions 

involved in the problem to develop duality results. It is sufficient to impose these conditions only on few 

components. 

2. DEFINITIONS: 

The following definitions are used further discussion. 

2.1. Definition:  If RX : θ   Lipschitz on X, the generalized directional derivative of θ  at Xx in the 

direction  

of
nR  x*)η(x,  , denoted by θ *(x ; x*)η(x, ) is given by  

θ *(x ; x*)η(x, ) =  
 








 

 λ

 θ(y)  - )  *xx,λη θ(y  
 SupLt

*xy0λ

. 

2.2. Definition:  The generalized η - gradient of θ  at Xx  in the direction of x*)η(x,  denoted by the set 

θ(x)n and is defined as follows 

θ(x)n = { θ:R n *(x ; x*)η(x, )   Xx,*xx,ηξT  } 
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When θ  is smooth (continuously differentiable), θ(x)n  coincides with sub- differential of convex functions. For 

the sake of convenience we denote n by  and let K= {1,2,….k} and K
1
K. 

2.3. Definition:  A vector function
x)(g

x)(f

i

i :
kRX  , locally Lipschitz at Xu  is said to be vector-ρ  - η 

convexity at u if there exist functions nRXxX:φη,  , a real number ρ  and 
1

i },0{\RX x X : θ Ki 
, 

such that for all Xx  

x)(g

x)(f

i

i  -       2T
i

i

i ux,φρ  ux,ηξux,θ 
(u)g

u)(f
 (u)fξ ii  , iK

1 

 

2.4. Definition: A vector function 
x)(g

x)(f

i

i :
kRX  , locally Lipschitz at Xu  is said to be vector-ρ  - η pseudo 

convex at u if there exist functions nRXxX:φη,  , a real number ρ  and 
1

i },0{\RX x X : θ Ki 
, such 

that for all Xx  

        (u)f ux,θ(x)f ux,θ  0ux,φρ  ux,ηξ i
1Ki

ii
1

i
2T










Ki

(u)fξ ii  , iK
1
. 

2.2.5. Definition:  A vector function 
x)(g

x)(f

i

i :
kRX  , locally Lipschitz at Xu  is said to be vector-ρ  - η – 

quasi convex at u if there exist functions nRXxX:φη,  , a real number ρ  and 
1

i },0{\RX x X : θ Ki 
, 

such that for all Xx  

         ux,φρ  -  ux,ηξ  (u)f ux,θ(x)f ux,θ 
2T

i
1Ki

ii
1

i  





Ki

(u)fξ ii  , iK
1
. 
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3. FORMULATIONS: 

3.1. We now consider the following minimax multi-objective fractional programming problem as the primal 

problem: 

(FP)                              
x)(g

x)(f
        v

i

i

ki1Xx
maxmin



 , 

 Subject to                    0 x)(h j  ,  j = 1,2,…,m                            (1) 

where R,R :g ,f n
ii   i = 1,2,..,k and R,R :h n

j   j = 1,2,…,m   are real valued functions and X
nR 

.Also ,g ,f ii  i = 1,2,..,k and ,h j  j = 1,2,…,m are locally Lipschitz functions around a point of X.  

For each  i = 1,2,..,p, let 0 x)(fi  and ig (x) > 0 for all  x in X.  

3. 2. Optimality Conditions 

Considered the following minimax nonlinear parametric programming problem in the parameter v:  

(FPv)             Fi(v) =  (x) vg- (x)f    iimax
ki1

min
Xx 

                 (2) 

To establish the optimality conditions and duality, we shall make use of problem (FPv). 

3.3. We now have the following programming problem that is equivalent to (EPv) for a given v: 

(EPv)                 Min q,    (3) 

                         subject to  (x) vg- (x)f ii   q , i = 1,2,..,k,           (4) 

0 x)(h j  ,  j = 1,2,…,m ,                           (5) 

were qR and x,vX. 
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3.4. Dual problem Formulation: 

 In this section, with the help of (EPv), we introduce dual (FD) to the problem (FP) and under suitable 

vector-ρ  - η convexity assumptions and also duality results relating to (EPv) and (FD). Mond-Weir [67] type dual 

(FD) to the equivalent problem (EPv) is stated as follows: 

 (FD)                          Maximize  y 

subject to      (u)},hμ  (u) vg- (u)fλ{ 0 j

m

1j
jii

k

1i
i

 





         (6) 

  y}  - (u) vg- (u)f{λ iii
 = 0, i= 1,2,..,k,     (7) 

j
μ (u)h j  = 0,   j= 1,2,..,m,                           (8) 

   




k

1i

*
iλ = 1,                                                          (9) 

uX,yR,
m*

j
k*

i Rμ ,Rλ   .              (10) 

Let T and W denotes the set of all feasible solutions of (EPv) and (FD) respectively. We now establish the 

following duality theorems relating to (EPv) and (FD). 

4. LEMMA:   

4.1. Lemma: If (FP) has an optimal solution xv* , hence after to be denoted by x*, with optimal value of the (FP) – 

objective as v*, then Fi(v*) = 0. Conversely, if Fi(v*) = 0, then (FP) and (FPv*) have the same optimal solution 

set. 

4.2. Lemma: If (x,v,q) is (EPv) – feasible, then x is (FP)- feasible. If x is (FP) – feasible, then there exist v and q 

such that (x, v, q) is (EPv) –feasible. 
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4.3. Lemma: x* is (FP) – optimal with corresponding optimal value of the (FP) – objective equal to v* iff 

(x*,v*,q*) is (EPv) optimal with corresponding optimal value of the (EPv) –objective equal to zero, i.e., q* = 0. 

5. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS 

5.1. Necessary Theorem   x* be an     optimal solution of (FP) with optimal value of the (FP) – objective equal to 

v*. Let an appropriate constraint qualification hold for (EPv*), then there exist q*R,
m*

j
k*

i Rμ ,Rλ   such 

that (x*,v*, )μ,λ **
 satisfies 

  (x*)}hμ  (x*)g* v- (x*)fλ{ 0 j

m

1j

*
jii

k

1i

*
i  





,   (11) 

  *q  - (x*)g* v- (x*)fλ ii
*
i  = 0, i= 1,2,..,k,     (12) 

*
jμ (x*)h j  = 0,   j= 1,2,..,m,                   (13) 

  *q  (x*)g* v- (x*)f ii   ,  i= 1,2,..,k,            ( 14)  

0 x)(h j  ,  j = 1,2,…,m                   ( 15) 




k

1i

*
iλ = 1,             (16) 

q* = 0,               (17)  

q*R,
m*

j
k*

i Rμ ,Rλ  , 0μ 0,λ *
j

*
i  .        (18) 

Proof: It Follows directly by writing the necessary optimality conditions to the problem (EPv*) there exists 

m*
j

k*
i Rμ ,Rλ   such that the following conditions hold:  

  (x*)}hμ  (x*)g* v- (x*)fλ{ 0 j

m

1j

*
jii

k

1i

*
i  





, 
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*
jμ (x*)h j  = 0,   j= 1,2,..,m, 

 0,λ*
i  i= 1,2,…,k, 

0μ*
j  , j= 1,2,….,m. 

Where   

V* = 
x*)(g

x*)(f

i

i , i= 1,2,…,k, 

setting  





k

1i
i

i*
i

λ

λ
λ , i= 1,2,…,k, 

*
jμ  = 




k

1i
i

j

λ

μ
, j= 1,2,….,m, 

we obtain that the conditions 11 to18 holds. 

Which completes proof of the theorem. 

5.2. Sufficient Optimality theorem: 

Let x* be a feasible solution of (FP). Assume that there exist 
m*

j

k

1

*
i

k*
i Rμ  ,λ with ,Rλ 


 

i
 such that (11)-

(18) are satisfied. Further, let  

(a)   I(x*)i , (x*)g* v- (x*)f ii  be vector-ρ  - η pseudocnvex with respect to η .  

(b) J(x*)j , x)(h j   vector-ρ  - η  - quasi convex with respect to η  and  
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(c ) (ρ  + ρ 1
) >0,  

where, I(x*) = { :Ii 0}  *q - (x*)g*  v-  (x*)f ii   and  J(x*) = { 0}  x)(h:Jj j  . 

Then x* is (FP) – optimal with the corresponding optimal objective value equal to v*. 

Proof: Let x* be not an optimal solution of (FP). Then it follows from lemma 2.4.3 that (x*, v*, q*) is not 

optimal for (EPv) with 

q<q*, (x x*). 

Using (4) and (14) , the inequality implies 

I(x*)i (x*),g*  v-  (x*)f q*  q (x)  vg-  (x)f iiii   

(x)  vg-  (x)f ii  < (x*)g*  v-  (x*)f ii . 

Also, from (12) it follows that 
*
iλ =0  for each iI(x*) and therefore  




k

1i

*
iλ = 1, which ensures the existence of at least one 

*
iλ >0, I(x*)i . Hence by multiplying each of the above 

inequalities  

by 
*
iλ  and θ i(x,x*) > 0, I(x*)i  and adding , we obtain 

       . (x*)g* v- (x*)fλ*xx,θ  (x) vg- (x)fλ*xx,θ ii
*
i

I(x*)i
iii

*
i

I(x*)i
i 





  

Now, vector-ρ  - η -pseudo convex of  (x)  vg-  (x)f ii , I(x*)i  implies 
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                           , 0ux,φρ  *xx,ηξλ 
2T

i
I(x*)i

i 


 

    iξ { (x*)g*  v-  (x*)f ii }, I(x*)i .            (19) 

Again, using 
*
iλ = 0, iI(x*), we can rewrite (19) as  

                             , 0ux,φρ  *xx,ηξλ 
2T

i
I(x*)i

i 


 

  iξ { (x*)g*  v-  (x*)f ii }, i = 1,2,..,k.     (20) 

Now, from (5),(13)and (18), it follows 

j
μ (x)h j 

*
jμ (x*)h j , J(x*)j . Again, multiply each of the above inequality by θ j(x,x*) > 0;j J(x*) and 

adding,we get     (x*).hμ *xx,θ (x)hμ *xx,θ j
*
j

J(x*)j
jj

*
j

J(x*)j
j 





  

Now, vector-ρ  - η  - quasi convexity of hj(x), J(x*)j implies 

     , *xx,φρ   - *xx,ηαμ 
21

J(x*)j

T
j

*
j 


  (x*), jj h J(x*)j . 

Since, 
*
jμ = 0, jJ(x*), therefore, without loss of generality, we can write above inequality as  

     , *xx,φρ   - *xx,ηαμ 
21

J(x*)j

T
j

*
j 


  (x*), jj h j = 1,2,….,m. (21) 

Adding (20) and (21), we get  
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m

1j

T
j

*
j

k

1i
i

*
i *xx,}ηαμξλ{  <  - (ρ+   21 *xx,φ )ρ , 

 iξ { (x*)g*  v-  (x*)f ii }, i = 1,2,..,k,   (x*), jj h j = 1,2,..,m. 

 






m

1j

T
j

*
j

k

1i
i

*
i *xx,}ηαμξλ{  < 0 (using assumption c).  

which is a contradiction to (11). 

Hence x* is an optimal solution of (FP), and consequently, (x*.,v*,q*) is an optimal solution for (EPv*) with 

optimal value q* =  0 = min q. 

Therefore, by lemma 4.3, x* is (FP) – optimal with v* as the corresponding optimal value of the (FP)- 

objective. 

 

 6. WEAK AND STRONG DUALITY RESULTS: 

6.1. Weak Duality Theorem: 

Let (x,v,q) T and (u,y, μλ, )  W be arbitrary feasible solutions of (EPv) and (FD) respectively. Further, 

assume that 

(a)   Ii ,  vg- f ii  be vector-ρ  - η  - pseudoconvex with respect to η . 

(b) J(x*)j , h j   vector-ρ  - η  - quasi convex  with respect to η  and 

     (c ) (ρ  + ρ 1
) >0, where, I* = { :Ii λ >0} and J*= { 0} μ:Jj j  . 

Then,                              qy. 
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Proof: Suppose, contrary to the result of the theorem  

q< y. 

Using (4), it implies that (x)  vg-  (x)f ii  q   y, I.i  

For Ii *, it follows from (2.7), in view of the above inequality that 

(x)  vg-  (x)f ii < (u)  vg-  (u)f ii Ii *. 

Hence, by multiplying each of the above inequality by λ i and  

θ j(x,u) > 0;i *I , and adding, we get  

 
i

*Ii
i λ ux,θ 


{ (x)  vg-  (x)f ii }<  

i
*Ii

i λ ux,θ 


{ (u)  vg-  (u)f ii }. 

Now, vector-ρ  - η  - pseudoconvex of   Ii ,  vg- f ii  *implies                                             

     , *xx,φρ   - ux,η 
21

*Ii

T1
i




   1
i

ξ { .*I i  (u)},  vg-  (u)f ii          (22) 

Again, using λ i = 0 ,iI* , we can rewrite (22) as  

     , *xx,φρ   - ux,ηξλ 
21k

1i

T1
i 



  1
i

ξ { k.1,2,.., i  (u)},  vg-  (u)f ii      (23) 

 Also, for J(x*)j , (5) and (8) yield 

j
μ (x)h j 

*
jμ (x*)h j , *Jj . 
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 Again, multiply each of the above inequality by θ j(x,u) > 0;j *J , 

  we get      (u).hμ ux,θ (x)hμ ux,θ jj
*Jj

jjj
*Jj

j 





  

 Now, vector-ρ  - η  - - quasi convexity of *Jj , h j   implies 

     , ux,φρ   - ux,ηαμ 
21

*Jj

T1
jj 



  (u), j
1 hj  *Jj .     (24) 

Since, jμ = 0, jJ*, without loss of generality, we can rewrite above inequality as  

     , ux,φρ   - ux,ηαμ 
21

*Jj

T1
jj 



  (u), j
1 hj   j = 1,2,….,m.    (25) 

Adding (23) and (24), we get  

 






m

1j

T1
jj

k

1i

1
ii ux,}ηαμξλ{  <  - (ρ +   21 ux,φ )ρ , 

 1
i

ξ { (u)  vg-  (u)f ii }, i = 1,2,..,k,   (u), j
1 hj  j = 1,2,..,m. 

 






m

1j

T1
jj

k

1i

1
ii ux,}ηαμξλ{ < 0 (using assumption c). 

Which is contradiction to  (7). 

 

 



      North Asian International Research Journal of Sciences, Engineering & I.T.  ISSN: 2454 - 7514   Vol. 2, Issue 2 February 2016 

 North Asian International research Journal consortiums www.nairjc.com 
15 

6.2. Strong Duality theorem: 

Let  q,v,x T be (EPv)- optimal at which an appropriate constraint qualification holds . Then there exist 

μ and λ such that  μ,λ,y,x  is (FD)-feasible and the corresponding objective values for (EPv) and (FD) are equal.  

If also, the hypothesis of theorem.6.1. holds,  μ,λ,y,x  is (FD)-optimal. 

Proof: Using necessary theorem, there exists 

mk Rμ ,R λ  such that 11 to18 holds.  

Where  V* = 
x*)(g

x*)(f

i

i , i= 1,2,…..,k, 

there fore  μ,λ,y,x  is feasible for (FD) suppose  μ,λ,v,x  is not efficient solution of (FD), then there exists 

a feasible 

 solution (u,v, λ ,μ ) of (FD) such that  

iλ { )x(gv  -  )x(f ii } iλ { )u(gv  -  )u(f ii } 

and  

jλ { )x(gv  -  )x(f jj } < jλ {     ugv  -  uf jj }, for some j. 

Which contradicts to weak duality theorem as  

jμ )x(h j =0. 

Hence the proof. 
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