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ABSTRACT: 

This paper addresses parameter estimate from Watson probability distribution. The Watson distribution is 

one of the simplest distributions for analyzing axially symmetric data. This distribution has gained some 

attention in recent years due to its modeling capability. The aim of this paper was to employ Maximum 

Likelihood Estimation (MLE) jointly with a numerical Method (Newton Raphson method) to obtain 

parameter estimate from the Watson model. This study used simulation study to generate data sets for 

different sample sizes using R statistical software. Standard errors were also computed and a 5% wald-

confidence interval was constructed for the distribution. The result of the study revealed the method of 

maximum likelihood estimation (MLE) jointly with a numerical method (Newton Raphson method) is 

efficient for obtaining parameter estimate from Watson model. The  study  recommends  that  the  method  of 

 maximum  likelihood  estimation (MLE)  jointly with  a numerical method (Newton Raphson) 

should be employed  to obtain parameter estimate  from  intractable models.  

Keywords: Parameter estimation, Watson model, Maximum Likelihood Estimation, Newton Raphson 

Method. 

 

 

1. INTRODUCTION 

 

 In statistical inference, there are two broad categories for the interpretation of probability and these are the 

Bayesian inference and the frequentist inference. These views differ on the fundamental nature of probability. 

Frequentist inference loosely define probability as the limit of an event‟s relative frequency in a large number of 

trials, and only in the context of experiments that is random and well-defined. Bayesian inference, on the other 
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hand, assigns probabilities to any statement even when a random process is not involved. In Bayesian inference, 

probability is a means of representing an individual‟s degree of belief in a statement, or given evidence. 

 

 In frequentist approach, a general method for estimating the specific parameters is called Maximum Likelihood 

(ML). The Maximum Likelihood is perhaps the most versatile method for fitting statistical models to data. In 

typical applications, the goal is to use a parametric statistical model to describe a set of data or a process that 

generate a set of data. The appeal of ML stems from the fact that it can be applied to a wide range of statistical 

models and kinds of data (e.g., continuous, discrete, categorical, censored, truncated, etc.), where other popular 

methods like least squares do not in general provide a satisfactory method of estimation. Indeed, when assuming an 

underlying normal distribution, the least squares estimates of regression coefficients are equivalent to ML estimates. 

The ML method is, however, much more general because it allows one to use other distributions as well as more 

general assumptions about the model and the form of the data. 

 

 The maximum likelihood estimator was developed by [11] based on the work done by Karl Pearson who worked 

on several estimation methods.While Fisher agreed with Pearson that the method of moments is better than least sq

uares, Fisher had an idea for an even better method where it took many years to fully conceptualize this method that 

ended up with the name maximum likelihood estimation. 

 

In 1912, when Fisher was a third year undergraduate student, Fisher published a paper called “Absolute 

criterion for fitting frequency curves.” The concepts in his paper were based on the principle of inverse probability 

which was later discarded. If any method can be considered comparable to inverse probability it is Bayesian 

estimation. Fisher was convinced that he had an idea for the superior method of estimation; criticism of his idea 

only fueled his pursuit which led to precise definition of estimation. In the end, his debates with other statisticians 

resulted in the creation of many statistical terms being used today, including the word “estimation” itself and even 

“statistics”. Finally, Fisher defined the difference between probability and likelihood and put his final touches on 

maximum likelihood estimation in (1922), Fisher introduced likelihood in the context of estimation via the method 

of maximum likelihood, but subsequently  he did not think of it as just a device to produce parameter estimates. The 

likelihood is a tool for an objective reasoning with data especially when dealing with the uncertainty due to the 

limited amount of information contained in the data. The likelihood function captures all the information in the data 

about a certain parameter, not just its maximizer. The obvious role of the maximum likelihood estimate (MLE) is to 

provide a point estimate for the parameter of interest; the purpose of having a point estimate is determined by the 

application area. In cases where a model parameter has a physical meaning, it is reasonable to ask what the best 

estimate is given the data. The uncertainty is in a way a nuisance and not part of the scientific question. Another 
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important role is for simplifying a multi-parameter likelihood through a profile likelihood nuisance parameters are 

replaced by the MLEs. 

 

Estimation is the process of determining approximate values for parameters of different population or 

events. How well the parameter is approximated depend on the method and the type of data. The method of 

maximum likelihood corresponds to many well-known estimation methods in statistics (such as; maximum 

likelihood, moments, least squares, Bayesian estimation etc) and ending particular parametric values that make the 

observed results the most probable (given the model). But this study is concerned with maximum likelihood. In 

statistics, maximum-likelihood estimation (MLE) is a method of estimating the parameters of a statistical model. 

When applied to a data set and given a statistical model, maximum-likelihood estimation provides estimates for the 

model‟s parameters. With more complicated models, maximum likelihood alone may not result in a closed form 

solution. Analytic expressions for maximum likelihood estimators in complex models are usually not easily 

available, and numerical methods are needed. Newton‟s method can be used to find solutions when no closed form 

exists and it converges quickly. Here the importance of an efficient estimator is reinforced since the platykurtic 

nature of an inefficient estimator diminishes the ability of the algorithm to converge. However, with the rapid 

increase of computer speed, maximum likelihood estimation has become easier and has increased in popularity. 

 

2. REVIEW OF RELATED LITERATURE 

 

The likelihood function tells us how likely the observed sample is function of the possible parameter values. 

Thus, maximizing the likelihood function for the data gives the parameter values for which the observed sample is 

most likely to have been generated, that is, the parameter values that „‟agree most closely‟‟ with the observed 

data [11]. Modern applied statistics deals with many settings in which the point wise evaluation of the likelihood 

function is impossible or computationally difficult. Areas such as financial modelling, genetics, geostatistics, 

neurophysiology and stochastic dynamical systems provide numerous examples of this [15]. It is consequently 

difficult to perform any inference (classical or Bayesian) about the parameters of the model. Various approaches to 

overcome this difficulty have been proposed, [5] used Composite Likelihood methods for approximating the 

likelihood function and also [15]; [2], applied Approximate Bayesian Computational methods for approximating the 

posterior distribution for obtaining estimates of parameter. It is well-known that ABC produces a sample 

approximation of the posterior distribution [2] in which there exist a deterministic approximation error in addition 

to Monte Carlo variability. The quality of the approximation to the posterior and theoretical properties of the 

estimators obtained with ABC have been studied in [17]; [13]; [7] and [10]. The use of ABC posterior samples for 

conducting model comparison was studied in [8] and [16]. Using this sample approximation to characterize the 
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mode of the posterior would in principle allow (approximate) maximum a posteriori (MAP) estimation. 

Furthermore, using a uniform prior distribution, under the parameters of interest, over any set which contains the 

MLE will lead to a MAP estimate which coincides with the MLE. In low-dimensional problems if we have a 

sample from the posterior distribution of the parameters, we can estimate its mode by using either nonparametric 

estimators of the density or another mode seeking technique such as the mean-shift algorithm [9]. Although 

[14] noted that (ABC) can also be used in frequentist applications, in particular for maximum-likelihood estimation 

this idea does not seem to have been developed. Alternative nonparametric density estimators which could also be 

considered within the AMLE context have been proposed recently in [6]; [12]. [4] suggest the maximum product of 

spacing (MPS) method. This method can be applied to any univariate distribution. [4] point out the drawbacks of 

the MPS method owing to the occurrence of the tied observations and numerical effects involved in ordering the cdf 

when there are explanatory variables in the model. [1] applied the grouped-data likelihood approach to the shifted 

power transformation model of [3].  

 

3. MATERIALS AND METHODS 

 

     The study employed MLE jointly with Numerical method (Newton Raphson method) to obtain the 

estimates, standard errors and 5 % Wald interval of the estimates of Watson probability distribution in simulation 

studies using R Statistical software. 

 

3.1 Model Specification 

 

         Watson Probability Distribution:  (3.1)              

 

3.1.1 The maximum likelihood estimation method 

 

           It is highly desirable to have a method that is generally applicable to the construction of statistical 

estimators that have “good” properties. In this section we present an important method for finding estimators of 

parameters proposed by geneticist/statistician Sir Ronald A. [11] called the method of maximum likelihood. Even 

though the method of moments is intuitive and easy to apply, it usually does not yield “good” estimators. The 

method of maximum likelihood is intuitively appealing, because we attempt to find the values of the true 

parameters that would have most likely produced the data that we in fact observed. For most cases of practical 

interest, the performance of maximum likelihood estimators is optimal for large enough data. This is one of the 

most versatile methods for fitting parametric statistical models to data. First, we define the concept of a likelihood 

function. 
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3.1.2  Definition Let     , be the joint probability (or    density) function of n random variables, …, with sample 

values, …,. The likelihood function of the sample is given by, …, = (, …,;), , in a briefer notation . 

 

It emphasize that is a function of for fixed sample values. 

 

3.1.3 The Newton-Raphson method 

 

The Newton-Raphson method, or Newton Method, is a powerful technique for solving equations 

numerically. Like so much of the differential calculus, it is based on the simple idea of linear approximation. The 

Newton Method, properly used, usually homes in on a root with devastating efficiency.  

 

3.1.4 Using Linear Approximations to Solve Equations 

 

 Let be a well-behaved function, and let be a root of the equation = 0. Starting with an estimate of. From, It produce 

an improved- hoping-estimate. From, it produces a new estimate. From, it produces a new estimate. It go on until it 

is „close enough‟ to -or until it becomes clear that it is getting nowhere. The above general style of proceeding is 

called iterative. Of the many iterative root-finding procedures, the Newton-Raphson method, with its combination 

of simplicity and power, is the most widely used. The initial estimate is sometimes called, but most mathematicians 

prefer to start counting at 0.Sometimes the initial estimate is called a “guess.” The Newton Method is usually very 

good if is close to, and can be horrid if it is not. The “guess” should be chosen with care. 

 

3.1.5 The Newton-Raphson Iteration 

 

Let be a good estimate of and let since the true root is and the number  measures how far the estimate is 

from the truth. Since  is „small, „the linear (tangent line) approximation can be used to conclude that And 

therefore, unless is close to , It follows that The new improved (?) estimate  is obtained from  in exactly the same 

way as  was obtained from Continue in this way. If is the current estimate, then the next estimate is given. 

 

4. IMPLEMENTING THE ITERATIVE METHOD 

 

4.1 Watson Probability distribution 

 

Consider a Watson distribution with p.d. : (4.1),  (4.2), (4.3) 

Equating the derivatives to zero and solving the equation is difficult making direct analytical solutions intractable. 

+                                                              (4.4) 
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4.2 The Numerical Method Using Simulation 

 

          The score function is given in (4.4) while the second derivative is                                          (4.5)     

                    

 
Figure 4.1: Loglikelihood graph of a Watson distribution. 

                                    

Table 4.1: Watson distribution Result Table 

 
N  S . E W a l d  C . I 

1 0 0 . 1 5 3 6 5 0 9 0 . 0 6 0 4 6 3 1 2 0.09318783,0.21411407 

1 0 0 0 . 1 5 3 6 5 0 9 0 . 0 1 9 1 2 0 1 2 0.133453080,0.1727711 

1 0 0 0 0 . 1 5 6 5 0 4 a 0 . 0 0 6 0 4 6 2 8 7 0.1476041,0.1596967 

1 0 0 0 0 0 . 1 5 3 6 5 0 4 0 . 0 0 1 9 1 2 0 0 4 0.1517384,0.555624 

 

 

5.   DISCUSSION 

 

       From the simulation study the iterations obtained by applying Newton Raphson method in 

obtaining maximum likelihood estimate for Watson probability distribution shows a total of 11 

iterations were carried out to obtain the maximum likelihood estimate. The solution converges at the 9
th

 2200.691 as 

the value of the log-likelihood and the value of the estimate which maximizes the function was 0.1546604 with 

gradient 3.183231 × 10−6. The variance which is the value of the second derivatives is 273541. 

 

  Table 4.1 shows the estimate which maximizes the likelihood function of Watson probability distribution for 

different sizes which ranges between 0.1536504 to 0.1536509 with standard errors reducing as the sample size 

increases (0.06046312 to 0.001912004). 
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6.  CONCLUSION 

 

      Based on the result of the estimates obtained from the  simulation study, it can be concluded that the method 

of maximum likelihood estimation method and numerical method (Newton Raphson method) can be employed 

to estimate parameter from intractable probability distribution model (Watson probability distribution). 

 

7.  RECOMMENDATION 

 

Based on the results drawn from this study, the following recommendation was made: 

 

 Parameter estimate from Watson distribution should be obtained using maximum likelihood estimation and 

Newton Raphson method 
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