

ISSN: 2454-7514

Vol. 4, Issue-3

March -2018

Index Copernicus Value: 52.88

IMPLEMENTATION OF MULTI SKILL SPATIAL CROWD SOURCING PROCESSING APPROACH

BHAGYSHREE DESHMUKH, NAMRATA KUMBHAR, SONALI NAIKNAWARE & ARATI SHINDE

ABSTRACT:

Data mining is the computing process of discovering pattern in large data sets. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for future use. With the rapid development of mobile devices and crowdsourcing platforms, the spatial crowdsourcing has attracted much attention from the database community. Specifically, the spatial crowdsourcing refers to sending location-based requests to workers, based on their current positions. The system consider a spatial crowdsourcing scenario, in which each worker has a set of qualified skills, whereas each spatial task such as repairing a house, decorating a room, and performing entertainment shows for a ceremony is time-constrained, under the budget constraint, and required a set of skills. For developing such system different methods and techniques are used such as greedy, g-divide-and-conquer and cost-modelbased adaptive algorithms to get worker-and-task assignments, the work should be done within time and under budget. The system introduce a task assignment on multi-skill oriented spatial crowdsourcing to demonstrate the efficiency and effectiveness of our MS-SC processing approaches on both real and synthetic data sets.

Keywords: Multi-skill spatial crowdsourcing, greedy algorithm, g-divide-and-conquer algorithm, cost-modelbased adaptive algorithm.

1. INTRODUCTION

Data mining is computing process of discovering pattern in large data set. With the popularity of GPSequipped smart and device and wireless mobile network people can easily identified and handle.

Crowd-sourcing platform assign a number of moving workers to do spatial task nearby which required

worker to move some one specified location, under budget constraint set required set of skills.

For developing such a system different method and techniques are used such as greedy, g-divide-and-conquer and cost-model-best adaptive algorithm to get workers and task, the work should be done within time and under budget.

The system introduce a task assignment on multi-skill oriented spatial crowd-sourcing to demonstrate the efficiency and effective ell also our MS-SC process approaches on both real and synthetic data set.

1.1 Data Mining:

Data mining is the computing process of discovering patterns in large datasets involving methods at the intersection of machine learning, statistics and database system. It is an essential process where intelligent methods are applied to extract data patterns. It is an interdisciplinary subfield of computer science The overall goal of data mining process is to extract information from dataset and transform it into an understandable structure for further use.

1.2 LITERATURE SURVEY

Sr.No	Author Name	Paper name	Algorithm and	Disadvantages	
			methods		
1	Huiqi Hu+ ,	Crowdsourced POI	Optimal Task	They focus on	
	Yudian Zheng*,	Labelling:	Assignment	choosing labels on	
	Zhifeng Bao++	LocationAware		objects such as images	
		Result Inference		and entities which	
		and Task		do not involve the	
		Assignment,		locations of tasks or	
		IEEE 2016		workers	
		Optimal			
2.	Kun Wang, Xin	Toward	System Model of	Time consuming,	
	Qi, Lei Shu, Der-	Trustworthy	Crowd sourcing in	Security issues, only	
	Jiunn Deng, and	Crowdsourcing in	SIoT, Social-Aware	focus on availability	
	Joel J. P. C.	the Social Internet	Data Transmission	threat issues relevant.	
	Rodrigues	of Things, IEEE			
		2016			
3.	Yongjian Zhao	Spatial	Unique Challenges	Workers just upload the	
	and Qi Han	Crowdsourcing:	of sc, Taxonomy of	data in their vicinity at	
		Current State and	Spatial Crowd	their chosen time, may	
		Future Directions,	sourcing	not provide a complete	
		IEEE 2016		picture of the air	
				quality status in the city	
	Peng Cheng ,	Reliable Diversity	Greedy, sampling,	It is possible that	
	Xiang Lian , Zhao	Based Spatial	Divide and Conquer	answers provided by	
4	Chen, Rui Fu,	Crowdsourcing by		workers are not always	
	Lei Chen ,	Moving Workers,		correct	
	Jinsong Han ,	IEEE 2015			
	Jizhong Zhao				
5.	Depeng Dang,	A Crowdsourcing	M-1 algorithm,	It has high computing	
	Ying Liu, Xiaoran	Worker Quality	Multi-worker	performance and	
	Zhang, Shihang	Evaluation	evaluation scheme,	horizontal scalability.	
	Huang,	Algorithm on	M-X Algorithm	And it is suitable for	
		MapReduce for		large-scale worker	

North Asian International research Journal consortiums www.nairjc.com

I.

÷

		Big Data		quality evaluations in a
		Applications,		big data environment.
		IEEE 2015		
6.	Yanrong Kang*	Quality-Aware	Quality Aware	Efficient online
	, Xin Miao+ ,	Online Task	Online Task	algorithm and analyze
	Kebin Liu+	Assignment in	assignment,	its performance
		Mobile	Branch and Bound	theoretically, more
		Crowdsourcing,	algorithm for	comprehensive
		IEEE 2015	HSWA	

2. GOALS AND OBJECTIVES

- The system which effectively handle crowdsourcing.
- In this system many task involve in one process such as,

1.Constructing a house.

2.Decorating a room.

3.Performing entertainment shows for a ceremony.

3. REVIEW OF CONFERENCE/JOURNAL PAPERS SUPPORTING PROJECT IDEA

[1] "Multi Skill Oriented Spatial Crowdsourcing" ArunS.Dalvi, Prof P.N.Kalavadekarin International Journal of Innovative Research in Computer and Communication Engineering 2017.

Description: Presently a day there is quick improvement in cell phone gadgets with group sourcing stages, Consideration from the database group towards spatial crowdsourcing is more. Especially, the spatial group sourcing sending solicitations to specialist for their errands utilizing their current live positions. In this proposed framework, Administrator need to share and acknowledge a spatial gathering sourcing structure and each worker have some uncommon qualified course of action of aptitudes for spatial errand like building a house, painting a divider, housetop, and performing live shows for an events which is having limited obliged i.e. time and spending design and qualified fitness set. In this framework, we will contemplate and give answer for the issue of Multi Skill Oriented Spatial Crowdsourcing (MSSC). In this it will finds an imperative advantageous answer for laborer and undertaking task approach, so we can coordinate the abilities of specialist with the client characterized assignments. By utilizing this approach specialists and additionally errand client will get more advantages which is expanded with spending requirement. Henceforth, we will demonstrate that this issue is NP-hard. So we will propose a

framework or we are giving answer for the given issue with three successful methodologies, with greedy, -divideand-conquer algorithm and overcome and cost-model based adaptive algorithm calculations to dole out qualified talented specialist for client errand which is valuable for laborers and in addition swarms. Through this expansive tests with gathering and master dataset which joins there whole information i.e. fitness set with respected worker and gathering with their profile, so we will give the beneficial and effective solution for our given issue for that we will use honest to goodness and produced datasets.

[2] "A survey on multi skill oriented spatial crowdsourcing." DalviArun S, Prof.P.N.Kalavadekar, inIJARIIE 2016

Description: Presently a day there is quick advancement in cell phone gadgets with swarm sourcing stages, Attention from the database group towards spatial crowdsourcing is more. Especially, the spatial group sourcing sending solicitations to laborer for their undertakings utilizing their current live positions. In this general framework, Admin need to participate and accept a spatial group sourcing framework and every laborer have some extraordinary qualified arrangement of abilities for spatial errand like building a house, painting a divider, rooftop, and performing live shows for an occasions which is having restricted compelled i.e. time and spending plan and qualified range of abilities. In this framework, we will examine and give answer for the issue of multi-expertise spatial group sourcing (MS-SC), In this it will finds an imperative valuable answer for specialist and errand task philosophy, so we can coordinate the aptitudes of laborer with the client characterized undertakings. By using this approach workers as well as task user will get more benefits which is maximized with budget constraint. Hence, we are going to prove that this problem is NP-hard. So that we will propose a system or we are providing solution to the given problem with three effective approaches, with greedy, g-divide and conquer and cost-model-based adaptive algorithms to assign qualified skilled worker for user task which is beneficial for workers as well as crowds. Through this extensive experiments with crowds and worker dataset which includes there whole information i.e. skill set with respected worker and crowd with their profile, so we are going to give the efficient and effective solution to our given problem for that we will use real as well as synthetic datasets.

[3]"Task Assignment on Multi-Skill Oriented Spatial Crowd sourcing"Prof.RupaliAdhau, MeenakshiThube, Swati Narawade,Pratima Gaikwad, in International Research Journal of Engineering and Technology (IRJET) 20117

Description: We propose a system which will enhance the standard of results in partner air to disentangle issues by implies that of group sourcing. This structure comprises of errand administration, laborer administration, assignment dispersion, and quality investigation. Subsequently, a critical thought inside the utilization of group sourcing is to relegate adequate undertakings to each person. Additionally, to expand the standard of the outcomes.

North Asian International research Journal consortiums www.nairjc.com

4. PROBLEM DEFINITION AND SCOPE

PROBLEM STATEMENT:

To implement the multi-skill spatial crowdsourcing approaches such as greedy algorithm, divide and conquer algorithm and cost model based adaptive algorithm, in which tasks are assign to multi-skilled workers with time constraints complex spatial task.

SCOPE OF STATEMENT:

This application will be helpful for users who want to complete their task within time and budget. In this system User can give the feedback about his/her work and also system. System will assign task to the skilled workers.

5. GOALS AND OBJECTIVES

- The system which effectively handle crowdsourcing.
- In this system many task involve in one process such as,

1.Constructing a house.

2.Decorating a room.

3.Performing entertainment shows for a ceremony.

6. MATHEMATICAL MODEL FOR PROPOSED SYSTEM

Let S be a system which assign the task to worker.

S={...}

Identify Input As I

S={I,....}

Let $I = \{u, w, t\}$

The input will be the user database, Worker database and task assigned by worker.

Identify Output As O

 $S=\{I,O,\ldots\}$

O = User assigned task will assigned to multi-skill worker according to budget and time. Identify the processes as P

S={I,O,P..}

North Asian International research Journal consortiums www.nairjc.com

13

 $P = \{Ta, Tc\}$

Ta=task will be allocated to worker.

Tc=task will be completed by worker and add status as free.

Identify the failure as F

 $S = \{I, O, P, F...\}$

F= Failure occurs when the system fails to assign the task to worker

Success as s

 $S = \{I, O, P, F, s..\}$

s=success occurs when task is successfully allocated to skilled worker

Identify Initial Condition as Ic

 $S = \{I, O, P, F, s, Ic\}$

Ic=Registration of workers

7. ALGORITHM

1) Greedy Algorithm :-

Algorithm Greedy (D, n) solution <- 0 for i<-1 to n do {s<-select(D) if (Feasible (solution,s)) then solution<-Union (Solution, s);}return solution

2) Divide and conquer algorithm :-

Step I :- Divide the problem into a number of subproblems that are smaller. instances of the same problem.

Step II :- Conquer the subproblems by solving them recursively.

Step III:-Combine the solutions to the subproblems into the solution for the. original problem.

3) Cost model based adaptive approach :-

Step I :- Estimate the cost by applying Greedy algorithm(Cg)

Step II :- Estimate the cost by applying Divide and conquer algorithm(Cd)

North Asian International research Journal consortiums www.nairjc.com

Identify

Step III:-Compare cost

If Cg < Cd, it select Cg otherwise select Cd.

GREEDY, g-D&C and ADAPTIVE, with a random method, namely RANDOM, which randomly assigns workers to tasks. In particular, GREEDY selects a "best" worker-and-task assignment with the highest score increase each time, which is a local optimal approach. The g-D&C algorithm keeps dividing the problem into g subproblems on each level, until finally the number of tasks in each subproblem is 1 (which can be solved by the greedy algorithm on each one-task subproblem). Here, the parameter g can be estimated by a cost model to minimize the computing cost. The cost-model-base adaptive algorithm (ADAPTIVE) makes the trade-off between GREEDY and g-D&C, in terms of efficiency and accuracy, which adaptively decides the stopping level of the divide and-conquer.

8. EFFICIENCY ISSUES

There is very rear case of failure is if any error occurs first time in team, no one faces this error and couldn't resolve it, Then system will fail for this fresh error.

9. OUTCOME

This application will help users to get on time service in critical situation where they want also it is best option for all user to get worker faster, normally they won't get worker fast to complete task.

10. APPLICATIONS

- 1) Construction
- 2) Wedding planning

11. TECHNOLOGIES USED

11.1. SQL Server 2008:

Microsoft SQL Server is a Relational Database Management System (RDBMS) developed by Microsoft. It is designed to run on a central server, so that multiple users can access the same data simultaneously. Generally users access the database through an application.

North Asian International research Journal consortiums www.nairjc.com

11.1.1 Sql Server Components:

1. Protocol Layer: Protocol layer implements the external interface to SQLServer.TDS is an application layer protocol, that is used to transfer data between database server and a client.

2. Data Storage: The main unit of data storage is a database, which is a collection of data. The data in the SQL Server database is stored in primary data files with an extension .mdf and Secondary data files, with an extension .ndf extension are used to store optional metadata. Log files in SQL Server are recognized with the .ldf extension.

3. Buffer Management: SQL Server buffers pages in RAM to minimize disc Input/Output. A 8 KB page could be buffered in-memory and the set of all pages currently buffered is called the buffer cache. On the basis of available memory, SQL Server decides how many pages will be cached in memory. The buffer cache is managed by the Buffer Manager.

4. Logging and Transaction: SQL Server uses transaction to make sure that any operation either totally completes or is undone if fails, but never leaves the database in an intermediate state. Any changes made to a page will update the in-memory cache of the page and simultaneously all the operations performed will be written to a log, along with the transaction Ideas log entry is recognized by an increasing Log Sequence Number (LSN) which makes sure that no event overwrites another event.SQL Server makes sure that the log will be written onto the disc before the actual page is written back.

5. Concurrency and locking: When multiple users update the same data or attempt to read data that is in the process of being changed by another user. In SQL Server have two modes of concurrency control-pessimistic concurrency and optimistic concurrency. In pessimistic concurrency control, SQL Server controls concurrent access by using locks (shared or exclusive). In Optimistic concurrency control, a new version of a row is created whenever the divot is updated. Both the versions of the row are stored and maintained into a system defined database Temp db.

12. RISK ANALYSIS

Risks	Category	Probability	Impact
Computer Crash	TI	70%	1
Late Delivery	BU	30%	1
Technology Will not Meet Exception	TE	25%	1
End Users Resist System	BU	20%	1
Changes In Requirements	PS	20%	2
Lack Of Development Experience	TI	20%	2
Lack Of Database Stability	TI	40%	2
Poor Quality Documentation	BU	35%	2
Deviation From Software Engineering Standards	PI	10%	3
Poor Comments In Code	TI	20%	4

The risks for the Project can be analyzed within the constraints of time and quality

- Impact Values:
 - 1. Catastrophic
 - 2. Critical
 - 3. Marginal
 - 4. Negligible

13. USAGE SCENARIO

This section provides various usage scenarios for the system to be developed.

13.1 User profiles

- 1. User
- 2. Server

13.2 Use Case Diagram:

A use case is a methodology used in system analysis to identify, clarify and organize system requirements. The main purpose of use case diagram is to show who interacts with your system and the main goal they achieve with it.

Fig: Use Case Diagram

14. FUNCTIONAL MODEL AND DESCRIPTION

A description of each major software function, along with data flow (structured anal-ysis) or class hierarchy (Analysis Class diagram with class description for object oriented system) is presented.

14.1 Sequence Diagram:

A Sequence diagram is an interaction diagram that shows how objects operate with one another and in what order. It is a construct of a message sequence chart. A sequence diagram shows object interactions arranged in time sequence. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. Sequence diagrams are typically associated with use case realizations in the Logical View of the system under development. Sequence diagrams are sometimes called event diagrams or event scenarios.

Sequence Diagram is as follows -

Fig: Sequence diagram

14.2 Activity Diagrams

Activity diagrams are graphical representations of work flows of stepwise activities and actions with support for choice, iteration and concurrency. An activity diagram shows the overall flow of control. Activity diagrams are

North Asian International research Journal consortiums www.nairjc.com

18

constructed from a lim-ited number of shapes, connected with arrows. The most important shape types: Rounded rectangles represent activities; Diamonds represent decisions; Bars repre-sent the start (split) or end (join) of concurrent activities. Figure 6.4 represents the activity diagram of the system.

Fig: Activity diagram

15. SOFTWARE ARCHITECTURE

Software architecture refers to the high level structures of a software system, the discipline of creating such structures, and the documentation of these structures. It is the set of structures needed to reason about the software system. Each structure comprises software elements, relations among them, and properties of both elements and relations.

15.1 ARCHITECTURAL DESIGN

Client by using this system Clients can creates their account and take information regarding the nearest appropriate Mechanic/Technician and send him an appointment request.

Fig : Architecture diagram

16. COMPONENT DESIGN

A component design is design specification for one of these adaptable components. Application engineers, using generation procedure may adapt and compose a set of these components to implement certain work products.

16.1 Class Diagram:

In software engineering, a class diagram in the Unied Modeling Language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, operations (or methods) and the relationships among the classes. The class diagram is the main building block of object oriented modeling. It is used both for general conceptual modeling of the systematic of the application, and for detailed modeling translating the models into programming code.

Fig : Class Diagram

16.2 Venn Diagram:

A Venn diagram or set diagram is a diagram that shows all possible logical relations between a finite collection of different sets. Venn diagrams were conceived around 1880 by John Venn. They are used to teach elementary set theory, as well as illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.

Fig: Venn Diagram

17. CONCLUSION

This system proposed by the problem of the multi-skill oriented spatial crowdsourcing (MS-SC), which assigns the time-constrained and multi-skill-required spatial tasks with dynamically moving workers, such that the required skills of tasks can be covered by skills of workers and the assignment score is maximized.

This system prove the processing of the MSSC problem is NP-hard, and thus this system proposed three approximation approaches (i.e., greedy, g-D&C, and cost-model-based adaptive algorithms), which can efficiently retrieve MS-SC answers. Extensive experiments have shown the efficiency and effectiveness of system proposed MS-SC approaches on both real and synthetic data sets.

18. REFERENCES

[1] Zhe Yang, Zhehui Zhang, Yuting Bao, Xiaoying Gan, Xiaohua Tian, Xinbing Wang. On Tac: Online Task Assignment for Crowd sourcing, In IEEE 2016

[2] Habibur Rahman, Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-Yahia, Gautam Das. Task Assignment Optimization in Collaborative Crowdsourcing. In 2015 IEEE.

[3] Ioannis Boutsis, Vana Kalogeraki. On task assignment for real-time reliable crowdsourcing. IEEE 2014.

[4] Khanh-Hung Dang and Kim-Tuyen Cao. Towards Reward-based Spatial Crowdsourcing. ICCAIS 2013.

[5] Ioannis Boutsis, Vana Kalogeraki, Crowdsourcing under Real-Time Constraints. 2013 IEEE

[6] Z. B. G. L. J. F. Huiqi Hu, Yudian Zheng and R. Cheng. Crowd-sourced poi labelling: Location-aware result inference and task assignment.ICDE 2016.

[7] S. S. Kanhere. Participatory sensing: Crowdsourcing data from mobile smartphones in urban spaces. In MDM 2011.