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ABSTRACT 

Under different forms of convexity conditions, sufficient Kuhn] Tucker conditions and three dual models are 

presented for the minimax fractional programming. 

 

 

1. INTRODUCTION 

 

The necessary and sufficient conditions for generalized minimax pro-gramming were first developed by 

Schmitendorf [16]. Convexity assumptions in the sufficient optimality of [16] and also employed the optimality 

conditions to construct several dual problems which involve pseudo convex and quasiconvex functions, and they 

also derived weak and strong duality theorems.  

 

Recently, Hanson [7] introduced the concept of a differentiable invex function which is a generalization of the 

convex function, and he proved the Kuhn Tucker sufficient optimality theorem and the duality theorem for the 

nonlinear programming problem involving differentiable invex functions. In this paper, Some definitions and 

notations are given in section 2.In section 2, We also establish the sufficient conditions for the minimax multi 

objective fractional programming problem with pseudo convexity. When the sufficient conditions are utilized, 

one parametric dual problem and two parametric-free dual problems may be formulated and duality results are 

presented in section 3,4and5 

 

2.  NOTATIONS AND PRELIMINARY RESULTS 

 

Throughout, this paper, let R 
n
 be the n-dimensional Euclidean space and Rq

n
 be its non-negative orthant. We 

now consider the following minimax fractional problem  
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(FP) Minimize F(x) =
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subject to 0)( xg j  

 

Where  
 

(a) Y is a component subset of R
m

,  

(b) (.,.)if  :  R
n
R

mR is a differentiable function with 0),( yxf i , 

(c) ih (., .): R
n
 R

mR is a differentiable function with 0),( yxhi , 

(d) 
j

g (.): R
n
 R

p
 is a differentiable function. 
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1

1and ),...,( 1 syyy  with sixYyi ,...,1),(  . 

 

In [5], Chandra and Kumar derived the following necessary conditions for optimality of (P): 

 

 THEROM 2.1 (Necessary Conditions)[5]. Let 
*x  be a (P)-optimal solution and )( *xg j , )( *xJj  be 

linearly independent. Then there exist ,,),,( *** RvKyts  and 
pR*  such that 
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pR* , 0* it ,





*

1

* 1
s

i
i

t , ** ,...,1),( sixYyi  .                                               (5) 

 

In order the relax the convexity assumption in Theorem 2.1, we impose the following generalized convexity 

introduced by Hanson [7]: 

 

Definition 2. 1.  Let RX :  (where 
nRX  ) be a differential function 

 

(a) The function  is  said to be convex at 0x  if there exists for all Xx , 

 

 
)()()()( 000 xxxxx T   . 

 

Further,   is said to be strictly convex at 0x if there exists for all Xx , 0xx  ,   

 

 )()()()( 000 xxxxx T   . 

 

(b) The function   is said to be pseudo convex at 0x if there exists for all Xx ,     

 

 )()( 00 xxx T  0 )()( 0xx                   

                                        

              or equivalently 

 

 
.0)()()()( 000  xxxxx T 
 

 

Further  ,  is said to be strictly pseudo convex at 0x if there exists for all Xx ,  0xx  ,        

  

                          
)()( 00 xxx T  0 )()( 0xx  

 
 

 Or  equivalently 

 

                         
.0)()()()( 000  xxxxx T    

 

(c) The function  is  said to be quasi convex at 0x if there exists for all Xx ,  

 

                        
.0)()()()( 000  xxxxx T 
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Theorem 2.2  (Sufficient conditions). 

 

 Assume that ( ytsvx ,,,,, *****  ) satisfy relations (2)-(5). If  

 




s

i
i

t
1

*` ( )(.,),(. *

iiii yhvyf  ) is a pseudo-convex function at 
*x , then  

*x  is an optimal solution of (P). 

 

Proof: Let x be any feasible solution of (P). From (1) and (4), we have   
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*x , we have  
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Relation (2) along with (6) yields 
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*
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i
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*x ,  
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Therefore , there exists a certain 0i ,such that 
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It follows that 
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Thus the proof of theorem is complete. 

Remark 2.1. In theorem 2.2, If 


*

1

*`
s

i
i

t ( )(.,),(. *

iiii yhvyf  ) is a quasi-convex function at 
*x  and (.)

1

*

j

p

j

j g


  is a 

strictly  pseudo-convex  function at 
*x , then the Theorem 2.2 also holds. 

 

3. DUALITY MODEL   

 

 Making the use of the optimality conditions of the preceding section, we introduce a dual 

(DI) to the minimax problem (P) as follows: 

 

 (DI) ,supmax ),,(1),,(),,( vytsHvzyts   where ),,(
1

ytsH  denotes the set of all triplets 

 (z,  , v )   RRR pn  satisfying  
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  Kyts ),,( . 

 

If for a triplet Kyts ),,(  the set  ),,(1 ytsH  is empty, then we define the supremum over it to be  . 

 

 THEOREM 3.1 (Weak Duality).    Let x  and ),,,,,( ytsvz  be (P)-feasible and be (DI)-feasible, 

respectively, and assume that 


s

i
i

t
1

))(.,),(.( iiii yhvyf   is a pseudo-convex function at z ,and (.)
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j

p
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quasi-convex function at z . Then .)),(/),((sup vyxhyxf iiYy   
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Proof: By both the feasibility of x  and (10), we have  
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Thus, the proof of the theorem is complete. 

Remark 3.1.    In Theorem 3.1, if ))(.,)(.,(
1

iiii

s

i

yhvyft
i




is a quasi-convex function at  z  and (.)
1

j

p

j

j g


 is 

a strictly pseudo-convex function at z , then Theorem 3.1 also holds.  

 

THEOREM 3.2 (Strong Duality).    Assume that 
*x  is a (P)-optimal solution and )(),( *xJjxg i    is linearly 

independent. If in addition the hypothesis of Theorem 3.1 holds for all (DI)-feasible points ),,,,,,( ytsvz 

then the two problems (P) and (DI) have the same external values. 

 



 
North Asian International Research Journal of Multidisciplinary   ISSN: 2454 - 2326    Vol. 3, Issue 9, Sept. 2017 

 
 

North Asian International research Journal consortiums www.nairjc.com 
 7 

Proof: By theorem 2.1 there exists ),,(),,(,),,( **

1

***** ytsHvxKyts    such that ),,,,,( ***** ytsvx   is a 

(DI)-optimal solution. 

 

Since ),,(/),( ***

iiii yxhyxfv   optimality of this feasible solution for (DI) follows from Theorem 3.1. 

 

THEOREM 3.3 (Strict Converse Duality).  Let  x and ),,,,,( ytsvz   be optimal solutions of (P) and (DI), 
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Proof: We shall assume that zx   and reach a contradiction. From Theorem 3.2 we know that 
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From (15) and (9) 
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Which contradicts (13), and the proof is complete. 

 

4. DUALITY MODEL II 

 

In order to discuss another dual model for (P), we first state another version of Theorem 2.1. This is done by 

replacing the parameter *v   with ),(/),( **

iiii yxhyxf  and by rewriting the multiplier functions associated with the 

inequality constraints. The result of Theorem 2.1 can be stated as follows. 
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Now we introduce a dual (DII) to the minimax problem (P) 

(DII) ),(supmax ),,(),(),,( 2
zfytsHzKyts    where ),,(2 ytsH denotes the set of pm RRz ),(  satisfying                                                                   
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If the set ),,(2 ytsH is empty, then we define the supremum over it to be  . Throughout this section, we simply 
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On account of pseudo-convexity of (.)1  at z , we get from (20)  
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Thus the proof of the theorem is complete. 

 

Remark  4.1. In theorem 4.2, if  (.)1 is a quasi-convex function at z , and (.)
1

j

p

j

j g


 is a strictly pseudo-

convex function at z ,  then Theorem 4.1 also holds. 

 

              Similar to the proof of Theorems 3.2, 3.3, we can establish Theorems 4.3, 4.4. Therefore, we simply state 

them. 

 

 THEOREM 4.3  (Strong Duality). If  
*x is a (P)-optimal solution and )(),( *xJjxg i   is  

linearly independent, and if in addition the hypothesis of Theorem 4.2 holds for all (DII)-feasible points 

),,,,( ytsz  ,  then the two problems (P) and (DII) have the same external values. 
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 THEOREM  4. 4  (Strict Converse Duality).            Let x and ),,,,,( ytsvz  be optimal solutions 

of (P) and (DII)-feasible points ),,,,,( ytsvz  , (.)1 is strictly pseudo-convex at z , and  (.)
1

j

p

j

j g
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 is quasi-

convex at z . Then x = z : that is, z  is a (P)-optimal solution. 

 

5.  DUALITY MODEL III 
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The above equation, together with (4), implies 
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Consequently, the result of Theorem 2.1 can be stated as follows. 

 

 THEOREM   5.1.  If *x is an optimal solution of the problem (P) and )(),( *xJjxg i   is linearly 

independent, then there exist Kyts ),,( ** and pR*   such that 
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We shall continue our discussion of the parameter-free duality model for (P) in this section by showing that the 

following variant of (DIII) is aiso the dual problem for (P): 
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If the set ),,(3 ytsH is empty, then we define the supremum over it to be   . Throughout this section, we 

simply denote   (.)1  as  
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We shall state weak duality, strong, and strict converse duality theorems for (P)-(DIII). 

 

 THEOREM  5.2 (Weak Duality). Let x  be (P)-feasible and ),,,,( ytsz  be (DIII)-feasible, and 

assume that (.)2 is a pseudo-convex function at z . Then    
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Proof: From (23), we have 
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Using the fact that ,0)(,0),(
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Using the fact that (.)2  is a pseudo-convex function at z , we have 
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But (24) and (25) are not compatible. Thus, the proof is complete. 

 

 Remark  5.1. If  we add the constraint 0)(),(
11




zgyzft j

p

j

j

s

i

iii
 to the dual problem (DIII), 

and if (.)),(.,),,(. jiiii gyhyf   are convex functions, and zxzx T  )( we can reduce Theorem 5.2 to 
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As a consequence of Theorems 5.1 and 5.2, we obtain the following strong duality theorem: 
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Hence we have 
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Hence, we have another inequality 
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With the strict pseudo-convexity of (.)2 , we have .0)()( 2  zzx T    that is,  
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But (23) and (26) are not compatible. This completes the proof. 
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