North Asian International Research Journal of
Multidisciplinary

CIF IMPACT FACTOR:4.465 ISSN: 2454-2326 Vol. 3, Issue-9 September-2017

ON MINIMAX MULTI OBJECTIVE FRACTIONAL OPTIMALITY CONDITIONS
WITH CONVEXITY

DR.G.VARALAKSHMI*

*Lecturer Incharge, Department of statistics, D.K.G.D.C(A) for women, Nellore

ABSTRACT
Under different forms of convexity conditions, sufficient Kuhn] Tucker conditions and three dual models are

presented for the minimax fractional programming.

1. INTRODUCTION

The necessary and sufficient conditions for generalized minimax pro-gramming were first developed by
Schmitendorf [16]. Convexity assumptions in the sufficient optimality of [16] and also employed the optimality
conditions to construct several dual problems which involve pseudo convex and quasiconvex functions, and they

also derived weak and strong duality theorems.

Recently, Hanson [7] introduced the concept of a differentiable invex function which is a generalization of the
convex function, and he proved the Kuhn Tucker sufficient optimality theorem and the duality theorem for the
nonlinear programming problem involving differentiable invex functions. In this paper, Some definitions and
notations are given in section 2.In section 2, We also establish the sufficient conditions for the minimax multi
objective fractional programming problem with pseudo convexity. When the sufficient conditions are utilized,
one parametric dual problem and two parametric-free dual problems may be formulated and duality results are

presented in section 3,4and5

2. NOTATIONS AND PRELIMINARY RESULTS

Throughout, this paper, let R " be the n-dimensional Euclidean space and Ry" be its non-negative orthant. We

now consider the following minimax fractional problem
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(FP) Minimize F(x) =sup ;'E: ;/;

subjectto g;(x)<0
Where

(a) Y is a component subset of R",
(b) f.(.) : R"xR™— R is a differentiable function with f, (x,y)>0,

(¢) h.(,.):R"xR™—>Ris adifferentiable function with h, (x, y) >0,

@ g, () R" — RP is a differentiable function.

We let
J={12,..,p}

J()={jed|g;()=0}

LO6Y) g il y)}
h(x.y) zer h(xy)

Y(x):{er

K ={st,y) e N xRS xR™

with >t =1and y=(y,,.. y;)withy; Y (x),i=1..,s .

i=1

1<s<n+1t=(t,...t)eR}

In [5], Chandra and Kumar derived the following necessary conditions for optimality of (P):

THEROM 2.1 (Necessary Conditions)[5]. Let x~ be a (P)-optimal solution and ng(x*), jed(x7) be

linearly independent. Then there exist (s*,t",¥) e K,v" eR,and x" R such that

s’ p
ZtT{V fi (O, y) =V Vh (X7, yi)}+VZﬂ;gj (x)=0, (2)
i=1 j=1
f.(x,y,)-vh(x,y)=0i=1.,s, (3)
p
2 4,9;(x) =0, 4)
j=1
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p eRP 20t =1y eY(x)i=1.,s". (5)
i=1

In order the relax the convexity assumption in Theorem 2.1, we impose the following generalized convexity

introduced by Hanson [7]:

Definition 2. 1. Let ¢: X — R (where X = R") be a differential function
(@) The function¢ is said to be convex atx, if there exists for all xe X,
B(x) = $(Xo) = (X = %,) T VB(X,).
Further, ¢ is said to be strictly convex at x, if there exists for all xe X, x# X,,
P(X) = P(Xo) > (X = %5) VP(X,) .
(b) The function ¢ is said to be pseudo convex at x, if there exists for all xe X,
(X=%0)" V§(X,) 20 = (X )2 ¢(X,)
or equivalently
P(x ) <h(%) = (X=%,)" Ve(x,) <0.
Further , ¢ is said to be strictly pseudo convex at x, if there exists for all xe X, x#Xx,,
(X=%0)" V@(X,) 20 = (X ) > h(X,)
Or equivalently
P )< P(%o) = (X=%,)" Ve(x,) <O.

(c) The function¢ is said to be quasi convex at X, if there exists for all xe X,

PX )< P(X) = (X =%,)" V(%,) <O.
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Theorem 2.2 (Sufficient conditions).

Assume that (x", 2 ,v",s",t",y ) satisfy relations (2)-(5). If
DL y)-Vh (. y;)) is a pseudo-convex function at x*, then X" is an optimal solution of (P).
i=1

Proof: Let x be any feasible solution of (P). From (1) and (4), we have
p * p * *
z/ujgj(x)g():z/ujgj(x ).
j=1 j=1

p
Using the quasi-convexity of > z/g;(.)=0atx", we have
j=1

p
(x=x)TV> ujg;(x)<0. (6)
j=1
Relation (2) along with (6) yields

(=X T () ~Vh (L y) 20 ™

Along with the facts that > t" (f,(. ,y;)—Vv"h(, y;)) is a pseudo-convex at X,

i=1
we get from (7) and (3)
O:th (i (7 y) =V hi(x7, ) < ZtT (fL(x L y)=vh(xy) .
i=1 i1
Therefore , there exists a certain i, ,such that

0< fi(x,y,)-vh(xy,) .

It follows that
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. f 1 Vi * i *1
sup fi(xy) > (XY, >y :sup—f'(x* y).
ver (X, y) (X y;) yer 0y (X, y)

Thus the proof of theorem is complete.

s p
Remark 2.1. In theorem 2.2, If ) t" (f,(. ,y;)—Vv'h,(. ¥;)) is a quasi-convex function at x" and > x;g,(.) isa
i=1

=L

strictly pseudo-convex function at x*, then the Theorem 2.2 also holds.

3. DUALITY MODEL

Making the use of the optimality conditions of the preceding section, we introduce a dual
(DI) to the minimax problem (P) as follows:

(D) max (g o1c SUP(, yvyehysiy) Vs WHEre w, st ) denotes the set of all triplets

(z, u,v)eR" xR xR, satisfying

St AV 2 )=V VR @Y VY k9, =0, ©
iti (fi(z yi)—v hi(z,y) 20,
©)
p

Zﬂjgj(Z)ZQ
j=1

(10)
(s,t,y)eK.

If for a triplet (s,t,y¥) e K the set H,(s,t,y) is empty, then we define the supremum over it to be — .
THEOREM 3.1 (Weak Duality). Let x and (z,u,v,s,t,y)be (P)-feasible and be (DI)-feasible,
s p
respectively, and assume that Zti (fi( . yi)—v (. y;)) is apseudo-convex function at z gnqg Z,ujgj(.) isa
=1

i=1 i

quasi-convex function atz  Then sup,., (f;(x,y)/hi(x,y)) > v.
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Proof: By both the feasibility of X and (10), we have

p p
Zﬂjgj(x) <0< Zﬂjgj(z)-
-1 i-1

p
Using the quasi-convex of > 1,9;(.) at Z e have

=1
P
(x-2)" VZH; g,(2)<0. (11) consequently, (8) and (11) yield
=
(=2 VYt (f,(z ,y) -V h(2,%,)20. (12

i=1
On account of pseudo-convexity of Zti (fiCyi)=v hi(y;)) at Z we get from (12) and (9)

i=1

Osisz_l:ti (fi(z ,y;)-v hi(z,yi))gisz_l:ti (f, (X y;) =V hi(xy)).

Therefore, there exists a certain i,, such that
0<fi(%y,)—V h(xy,).

It follows that

sup fi (X, y) > fi (X, yio) >V,
yeY hi (X, y) hi (X! yio)

Thus, the proof of the theorem is complete.

s p
Remark 3.1. In Theorem 3.1, if Zti (f.(.,y;)—Vv h.(.,y,))is a quasi-convex function at z and Z/‘j g;()is
i=1

j=1

a strictly pseudo-convex function atZ , then Theorem 3.1 also holds.

THEOREM 3.2 (Strong Duality). Assume that x™ is a (P)-optimal solution and Vg, (x), je J(x") is linearly
independent. If in addition the hypothesis of Theorem 3.1 holds for all (DI)-feasible points (z, «,V,s,t, ),

then the two problems (P) and (DI) have the same external values.
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Proof: By theorem 2.1 there exists (s',t",¥) e K, (X", ',V') e H,(s",t", ¥) such that (x", 2 ,v’,s",t",y) isa

(DI)-optimal solution.

Since v' = f,(x", y;)/h(x",y,), optimality of this feasible solution for (DI) follows from Theorem 3.1.

THEOREM 3.3 (StrlCt Converse Duallty) Let xand (Z,,U,V,S,t,y) be Optlmal solutions of (P) and (Dl)

respectively, and assume that Zti(fi(.,yi)—v h,(.,y;))is a pseudo-convex function at  Zfor all
i=1

P
(s,t,¥) e K, (X, 1,V) € H, (s, t, y),Zngj (.) is a quasi-convex function at z and, Vg;(X), j € J(X) is linearly

i1

independent. Then X =z; that is, Z js a (P)-optimal solution and SUP,. (f;(z, ¥)/h;(z,y)) = v.

Proof: We shall assume that X = z and reach a contradiction. From Theorem 3.2 we know that

sup f.(X,y) v

= 13
yer 0y (X,y) 13)

By both the feasibility of X and (10), we have

p p
D 49;(X) <0< 1;9,(2).
j=L j=L
p
Using the quasi-convex of Zﬂi d;(.),we get from the inequality above
j=1

p
(X—2)"'VY p;9;(z) <O0. (14)
j=1
Consequently, (8) and (14) yield

(-2 VSt (£,(z .y) -V h(z,y,)20. (15)

i=1

On account of strict pseudo-convexity of Zti (i y)—-v h(,y))at z we get

i=1
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From (15) and (9)
0=t (12 )=V Ry < Tt (k¥ -V A (x )

Therefore, there exists a certain i,, such that

0< fi (X, Yi0 ) -V hi (X' yio)'
It follows that

sup f.(X,y) S f, (X, Yio) SV = sup f,(z, y)_
ver B (G Y) (X, Y,) ver i (2,Y)

Which contradicts (13), and the proof is complete.

4. DUALITY MODEL Il

In order to discuss another dual model for (P), we first state another version of Theorem 2.1. This is done by

replacing the parameter v~ with f,(x",y,)/h.(x",y,) and by rewriting the multiplier functions associated with the

inequality constraints. The result of Theorem 2.1 can be stated as follows.

THEOEM 4.1.1f x” is an optimal solution of the problem (P) andVg,(x), je J(x") is linearly

independent, then there exists (s',t",¥) e Kand " € R? such that

SO YVE (¢ ¥ = £, 0L y)VR O )3+ VY g, () =0,
iﬂ;gj (X*) =0,

*

p eRP 20t =1y, eY(X),i=1.,s".
i=1
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Now we introduce a dual (DI1) to the minimax problem (P)
(D) max ok SUP( yen, seyy T (2), where H,(s,t,y) denotes the set of (z, 1) € R™ x R satisfying

N D 16
Zti{h(ziyi)Vfi(Ziyi)_ fi(znyi)Vhi(Zvyi)}"'vZﬂjgj(z):01 10)
Zp:,ujgj(z) >0, @17
y, €Y(2),i=1..,5,
and
_ f.(z,y)
SO PRy (18)

If the set H,(s,t,¥) is empty, then we define the supremum over it to be —oo. Throughout this section, we simply

denote y(.) as

St (Y Gy - G yon Gy

THEOEREM 4.2 (Weak Duality). Let x be (P)-feasible and (Z:4:V:S,1Y) be (DII)-

P
feasible, respectively, and assume that ¥2() is a pseudo-convex function at 2+ and 2. #;9;(.) is a quasi-convex

j=1

function at z. Then sup,, (f;(x ,y;)/h(x ,y;)) = F(2).

Proof: By both the feasibility of x and (17), we have

p p
Zﬂjgj(X)SOSZﬂjgj(z)'
=l j=1

p
Using the quasi-convexity Zyj g;(.)atz, we have
j=1

(x—12)" Vingj(z) <0. (19)

Consequently, (16) and (19) yield
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(x—2)"Vy,(2) > 0.

On account of pseudo-convexity ofy, (.) atz, we get from (20)
0=w,(2) <y, (%)

Therefore, there exists a certaini, , such that
0<h (z.y,)fi (% y) — fi(Z yh (XY, ).

It follows that

sup f.(x,y) S f.(x,y;,) S f.(z.y,)
ver (X y)  hi(xy,)  hi(z,y,)

Since y;, €Y(z), we have

F(Z) _ fi(Z’ yio).

hi (Z! yio)

Thus the proof of the theorem is complete.

(20)

(21)

(22)

>

p
Remark 4.1. In theorem 4.2, if w,()is a quasi-convex function at z  and Z,ujgj(.)is a strictly pseudo-

convex function at z | then Theorem 4.1 also holds.

=1

Similar to the proof of Theorems 3.2, 3.3, we can establish Theorems 4.3, 4.4. Therefore, we simply state

them.

THEOREM 4.3 (Strong Duality). If X is a (P)-optimal solution and Vg;(x), je J(X") is

linearly independent, and if in addition the hypothesis of Theorem 4.2 holds for all (DII)-feasible points

(z, u,8,t,y) then the two problems (P) and (DII) have the same external values.
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THEOREM 4. 4 (Strict Converse Duality). Let x and (z, &,V,s,t, ¥) be optimal solutions

p
of (P) and (Dll)-feasible points(z, ,v,s,t,y), w,()is strictly pseudo-convex atz  and z,ujgj(.)is quasi-

=1

convexat z, Then X=2:thatis, Z is a (P)-optimal solution.

5. DUALITY MODEL 111

Based on (2) and (3), we obtain

*

fOC,Y) oy, P . .
LTIV (XY ) + V) w9, (X ) =0, forall i=1,.,s".
=1 j=1

Vitjfi(x*’yi)_h.(x* e > 1;9;(x7) =0, forall i =1,..,

Multiplying the above equations respectively byt:’(hi (X, y;), i=1,.,s",and adding them up, we have
s” . . s . . P . s . . s . .
Zti f,(x,y)V Zti f, (x !yi)+Z/ujgj(X ) _Zti f,(x, ¥V ztihi(x Yi) | =0.
i=1 i=1 j=1 i=1 i=1
The above equation, together with (4), implies

s p
Zti f, (x lyi)+Zﬂjgj(X )
vl 1= j=1

it?hi x",y,)
:[;t:hi(x*,yi)j x[[;t?hi(x*,yi)}V[;t?fi(X*,yi)+;ﬂ;9j(x*)] {itrfi(x*'yi)+.zp:ﬂ;gj(X*)}V{itjhi(x*’yi)D
_ E.Sztfhi X, yi)J Xﬂifhﬂ (' y‘)H-SZtT )+ 2o ;g"(x*)}

) {Zt Oy, )Hitfhi (X", )D
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Consequently, the result of Theorem 2.1 can be stated as follows.

THEOREM 5.1. If x"is an optimal solution of the problem (P) and Vg, (x), j € J(x") is linearly

independent, then there exist(s™,t",¥) e Kand #~ €R’ such that

s p
Zti f, (x lyi)+Z/ujgj(X )
\V/ i=1 j=1 :01

Zt:hi (x7,y1)
=)

p
Z;ujgj(x )=0,
=

*

p eRP 20>t =1y, eY(X),i=1.,s".
i=1

We shall continue our discussion of the parameter-free duality model for (P) in this section by showing that the

following variant of (DI1I) is aiso the dual problem for (P):

(Zt fi(z,yi)éu,-g,»(z)J
(it?hi(z, yi)j

(DHI) max ook SUP L er, (siy) where H,(s,t, y)denotes the set (z,u) e R™ xR/

satisfying

St (2 y)+ 3 000,(2)

v - = 0. (23)

Sth(y,)

If the set H,(s,t,¥)is empty, then we define the supremum over it to be —oo . Throughout this section, we

simply denote () as

Sthy)| 3t fi<.,yi>+iﬂjg,-<.>Hiti 2 Y0+ 09,2 [y

North Asian International research Journal consortiums www.nairjc.com
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We shall state weak duality, strong, and strict converse duality theorems for (P)-(DIII).

THEOREM 5.2 (Weak Duality). Let x be (P)-feasible and (z, 1, s,t, y)be (DIIl)-feasible, and

assume that y, (.) is a pseudo-convex function at z . Then

RIS WG

e
S th(z v,
2t
Proof: From (23), we have
V,(z) =0. (24)

By means of contradiction, we suppose that

S

f (le) . izﬂ:ti fi(Z,yi)+JZ_1:ujgj(z).

P % y) :

yeY Tl ) *

! t-hi(ziyi)
2t

Thus we have an inequality

OGN R @ y) <h(x y){iti f (2, yi)+iujg,-(z)} Forall yeY.

i=1 i=1

Furthermore, this above inequality implies

S| Sne < Sune yi)}{iti fi<z,yi)+iu,-g,-(z)}

Hence, we have another inequality

[Zt f (%, yi)+iy1gj(x)}{iti hi(z,yi)}{iti h; (x, yi)}{iti fi(z,yi)+iﬂjgj(2)}

<> ,0,003t N (2.,)
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S p
Using the fact that >t h,(z,y;) >0,> x;9;(x) <0, and the latest inequality, we have
i=1 =L

w,(X) <0=y,(2).
Using the fact thaty, () is a pseudo-convex function at z , we have
(x—2)"V,(2) <0. (25)

But (24) and (25) are not compatible. Thus, the proof is complete.

S p
Remark 5.1. If we add the constraintZti f.(z,y;)+ D _u;9,(2) > 0to the dual problem (DIII),
i=1 j=1
and if f,(.,y;)~h(.y).9;() are convex functions, and (x—2)" =x—zwe can reduce Theorem 5.2 to

Theorem 3.2, of Chandra and Kumar [5].

As a consequence of Theorems 5.1 and 5.2, we obtain the following strong duality theorem:

THEOREM 5.3 (Strong Duality). Ifx™ is a (P)-optimal solution andVg;(x), je J(x) is

linearly independent, and if in addition the hypothesis of Theorem 5.2 holds for all (DIll)-feasible points

(z, 1, 8,1, y) , then the two problems (P) and (DII1) have the same extremal values.

THEOREM 5.4 (Strict Converse Duality). Let X and (z, u,s,t,y)be optimal solutions
of (P) and (DIlI), respectively, and assume thaty,() is a strictly pseudo-convex function at xfor all
(s,t,¥) e K,(z,u) e H,(s,t,Y), and Vg, (x), j € J(x") is linearly independent. Then X =z; that is, z is a (P)-

optimal solution.

Proof:  We shall assume that X = z;and reach a contradiction. From Theorem 5.3 we know that

o fi()_(' v) ) iZ:l:ti fi(ziyi)-"_jz_l:/ujgj(z)
p .

WY S by

Hence we have

North Asian International research Journal consortiums www.nairjc.com
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LDy <h (% y){iti fi(z,yi>+iu,-gj<z)} Forall yeY.

Furthermore, this above inequality implies

{it‘ f. (X, yi):||:iti h; (z, yi):| < |:itihi (X, Y ):”:Zi:t, fi(zy)+ Zi:ﬂj g; (Z)}

Hence, we have another inequality
s p S S S P
{Zti fi (X, yi)+Zu,-g,-(>‘<)}{Zti h (z,yi)}—[Ztihi (%, yi)}{Zti fi(z,yi)+2ujg,-(z)}
i1 =1 i=1 i=1 =1 =1
p . S
< Zﬂj g; (X)Zti hi (z,y;)-
j=1 i=1
S p
Using the fact that Yt h(z,y;) >0,> x,9;(X) <0, and the latest inequality, we get
i=1 j=1

w,(X) <0=y,(2).

With the strict pseudo-convexity of v, (.) , we have (x—z)" Vi, (z) < 0. that s,

(z—z)T{iti hi<z,yi)v{iti . (z,yi)iu,.g,-(z)Hiti fi(z,yi)éu,-g,-(z)}{viti hi<z,yi)}}<o. (29)

But (23) and (26) are not compatible. This completes the proof.
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