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ABSTACT: 

We study the multi equivalence problem for probabilistic Aleshin Type Automata (pAA) and their subclasses. 

We show that the problem is interreducible with the multiplicity equivalence problem for context-free 

grammars, the decidability of which has been open for several decades. Interreducibility also holds for  pAA  

with one control state.In contrast, for the case of a one-letter input alphabet we show that pAA language E 

equivalence (and hence multiplicity equivalence of context-free grammars) is in PSPACE  and at least as 

hard as the polynomial identity testing problem. 

KEYWORDS: Bisimulation  probabilistic automata (BPA) ,probabilistic Aleshin automata , probabilistic 

labelled transition system (pLTS), 

 

1. INTRODUCTION  

 

An input word determines a unique computation of a dAA, whereas the computation of a PAA on an input word 

can have many branches. In this paper we are concerned with probabilistic Aleshin type automata (pAA), where 

we only allow probabilistic branching. Here two pAA are language equivalent if they accept each word with the 

same probability. The decidability of the language equivalence problem for pAA is still open, even in the case 

with no ε-transitions, to which we restrict ourselves in this paper. The language theory of probabilistic Aleshin 

type automata has been studied in [1], where their equivalence with stochastic context-free grammars (CFGs) is 

proved. There is also a growing body of work concerning the complexity of model checking and equivalence 

checking of probabilistic Aleshin type automata, probabilistic one-counter machines and probabilistic BPA (see, 

e.g., [5,10,11,13]). Equivalence checking is the problem of determining whether two systems are semantically 

identical. This is an important question in automated verification and, more generally, represents a line of research 

that can be traced back to the inception of theoretical computer science. A great deal of work in this area has been 

devoted to the complexity of language equivalence for various classes of infinite-state systems based on 

grammars and automata, such as basic process algebras (BPA) and pushdown processes. We mention in particular 

the landmark result showing the decidability of language equivalence for deterministic Aleshin type automata 

(dAA) [24]; the problem is well-known to be undecidable for general (nondeterministic) PAA.It was shown 

recently in [17] that the language equivalence problem for probabilistic visibly pushdown automata is log space 
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equivalent to the problem of polynomial identity testing, that is, determining whether a polynomial presented as 

an arithmetic circuit is identically zero. The latter problem is known to be in coRP.  

The contribution of this paper is the following. For general pAA we show that language equivalence is 

polynomially interreducible with multiplicity equivalence of CFGs. The latter problem asks whether in two given 

grammars every word has the same number of derivation trees. The decidability question for multiplicity 

equivalence is a long-standing open problem in theory of formal languages [21,19,18,15]. Our construction works 

by turning nondeterministic branches of a CFG into carefully designed probabilistic transitions of a pAA, and 

vice versa. A consequence of this reduction is that the equivalence problem for pAA is polynomially reducible to 

the equivalence problem for pAA with one control state. We note that a corresponding polynomial reduction from 

the general case to the one-state case would be a breakthrough in the case of deterministic PDA since one-state 

dAA equivalence is known to be in P (see [14], or [8] for the best known upper bound). We further show that in 

the case of a one-letter input alphabet the language equivalence problem is decidable in polynomial space. We use 

the fact that in this case the problem reduces to comparing distributions of termination probabilities within i steps 

(i = 0, 1, 2, . . .). By using an equation system for generating functions we reduce the latter problem to the 

decision problem for the existential fragment of the theory of the reals (which is known to be in PSPACE but not 

known to be PSPACE-complete). Moreover, we show that the hardness result from [17] carries over; i.e., 

language equivalence for one-letter pAA is at least as hard as the polynomial identity testing. Very recent work 

[7] considers (non)probabilistic dAA with a one-letter input alphabet, allowing for ε -transitions. They show, 

among other results, that the equivalence problem for such dAA is P-complete. As a byproduct of the mentioned 

results, we obtain that multiplicity equivalence of CFG with one-letter input alphabet is in PSPACE. The 

previously known decidability result, which is based on elimination theory for systems of polynomial equations, 

did not provide any complexity bound, see [19,18,15] and the references therein. 

 

2. DEFINITIONS AND RESULTS  

By N, Q, R we denote the set of nonnegative integers, the set of rationals, and the set of real’s, 

respectively. We denote the set of words over a finite alphabet Σ by Σ ∗ . We denote the empty word by ε and 

write Σ + = Σ ∗ - {ε}. By |w | we denote the length of w ∈ Σ ∗ , so that |ε| = 0. For k ∈ N we put Σ 
≤k

 = {w ∈ Σ ∗ ; 

|w | ≤ k}.  

Given a finite or countable set A, a probability distribution on A is a function d : A → [0, 1] ∩ Q such that∑ a∈A 

d(a) = 1. The support of a probability distribution d is the set support (d):= {a ∈ A: d (a) > 0}. The set of all 

probability distributions on A is denoted by D(A). A Dirac distribution is one whose support is a singleton.  

2.1 Construction of 4-state Aleshin type automaton S 

The constructed Aleshin type automaton S, over the alphabet X= {0, 1} with the set of internal states Q   ={a, b, c, 

d}. The state transition function φ and the output function ψ of S are defined as follows:  (a,0)=d,  (a,1)=b,  

(b,0)=b,  (b,1)=c, (c,0)=d, (c,1)=d, (d,0)=a, (d,1)=a ; ψ(a,0)=1, ψ(a,1)=0, ψ(b,0)=1, ψ(b,1)=0, ψ(c,0)=0, 

ψ(c,1)=1, ψ(d,0)=0, ψ(d,1)=1. 
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Fig. 1 Aleshin type automaton S 

 

2.2 Probabilistic labeled transition systems  

 

A probabilistic labelled transition system (pLTS) is a tuple S = (S , Σ ,  ), where S is a finite or countable 

set of states, Σ is a finite input alphabet, whose elements are also called actions, and → ⊆ S × Σ × D(S ) is a 

transition relation satisfying that for each pair (s,a) there is at most one d such that (s,a,d) ∈ →. We write s 

a d to say that (s,a,d) ∈ → , and and s  xa,  s’ when there is s a d such that d(s’ ) = x. We also write s 

→ s’ to say that there exists a transition s a d with s’ ∈ support (d). We say that an action  is enabled in a 

state s ∈ S if s a d for some d; otherwise a is disabled in s. A state s ∈ S is terminating if no action is enabled 

in s.  

Let S = (S, Σ, →) be a pLTS. An execution on a word a1a2 . . .ak ∈ Σ* , starting in a given state s0 , is a finite 

sequence s0  
1,xao

 s1   22 ,xa
s2……   kk xa , sk. Given s0 and a1a2 . . .ak , the probability of such an execution 

is 

k

i ix
1

. 

 

2.3. Probabilistic Aleshin Type automata 

 

A probabilistic pushdown automaton (pAA) is a tuple _ = (Q , Γ , Σ , →) where Q is a finite set of control 

states, Γ is a finite stack alphabet, Σ is a finite input alphabet, and → ⊆ Q × Γ × Σ × D(Q × Γ 
≤2

 ) is a finite set of 

rules. We require that for each (q, X, a) ∈ Q × Γ × Σ there be at most one distribution d such that (q, X ,a,d) ∈ →. 

We write qX a d to denote (q, X , a, d) ∈ →; informally speaking, in the control state q with X at the top 

of the stack we can perform an a-transition to the distribution d.  

 

A configuration of a pAA ∆ = (Q, Γ, Σ, →) is a pair (q, β ) ∈ Q × Γ ∗ ; we often write qβ instead of (q, β ). 

We write qX       xa, rβ if qX    a d where d(rβ ) = x. 

 

When speaking of the size of ∆, we assume that the probabilities in the transition relation are given as 

quotients of integers written in binary.  

A pAA ∆ = (Q ,Γ ,Σ , →) generates a pLTS S (∆) = (Q × Γ ∗ ,Σ , → ) as follows. For each β ∈ Γ ∗ , a rule 



    North Asian International Research Journal of Sciences, Engineering & I.T.  ISSN: 2454 - 7514   Vol. 1, Issue 5 December 2015 

 North Asian International research Journal consortiums www.nairjc.com 
6 

qX a  d of ∆ induces a transition qXβ a  d’ in S (∆), where d’ ∈ D(Q × Γ∗) is defined by d’(pαβ ) = 

d(pα) for all p ∈ Q and α ∈ Γ 
≤2 

(and thus d’ is 0 elsewhere). We note that all configurations with the empty stack, 

written as pε or just as p , are terminating states in S (∆). (Later we will assume that the empty-stack 

configurations are the only terminating states.)  

 

The probability that ∆ accepts a word w ∈ Σ * from a configuration qα is the sum of the probabilities of all 

executions on w, starting in qα in S (∆), that end in a configuration with the empty stack. We denote this 

probability by P∆qα (w).  

 A probabilistic basic process algebra (pAA)∆ is a pAA with only one control state. In this case we often 

write just α instead of qα for a configuration 

 

 
Fig.2A fragment of S(∆) 

 

2.4. The language equivalence problem 

 

We study the language equivalence problem for pAA. The problem asks whether two configurations q1 α1 

and q2 α2 of a given pAA∆ accept each input word with the same probability, i.e., whether the functions P ∆q1α1 

(·) and P ∆q2α2 (·) are the same. If yes, we also say that q1 α1 and q2 α2 are equivalent in ∆.  

 

Example 1. Consider the pAA∆ = ({p,q}, {X , Y }, {a,b}, _→) with the following rules:  

 

pYpYpXXpX aa  1,5.0, , qYYqYqYXqX aa  5.0,1.0, ,  

 ppYppX ba  1,5.0, ,          qqYqqX aa  5.0,5.0, ,  

pYpYpXXpX ab  4.0,1, ,      qYqYqXqX bb  1,1, ,  

The restriction of ∆ to the control state p yields a Probability Of bisimilarity automata pBPA. A fragment 

of the pLTS S (∆) is shown in Fig. 2. The configurations pX X and qY X are equivalent in ∆, since for every 

word w we have P ∆ pX X (w ) = P ∆ qYX (w ); this can be derived by observing that for all words w and i ≥ 1 the 

probability of being in p X
i
 or qY

 i−1
 X after reading w is the same independently of whether we start from pXX 

or from qYX (a formal proof of this observation can be given by a straightforward induction on the length of w ).  

 

In what follows we impose two restrictions on the language equivalence problem; both are without loss 

of generality. We say that a pAA ∆= (Q ,Γ ,Σ , →) is non-blocking if for each (q, X ,a) ∈ Q × Γ × Σ there is 
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(precisely) one distribution d such that qX a  d; hence each action is disabled only in the empty-stack 

configurations in S (∆). We assume that our pAA are non-blocking. Given an arbitrary pAA ∆ = (Q , Γ , Σ , →) 

we obtain an equivalent non-blocking pAA ∆′ as follows: we add a fresh stack symbol ⊥ and for every (q, X ,a) 

where there is no d such that (q, X ,a,d) ∈ → (which includes the case X = ⊥) we add the rule (q, X ,a,d) where 

d(q⊥) = 1. Hence P ∆′qa(w ) = 0 if a contains ⊥, and P ∆qa (w ) = P ∆′qa (w ) for all q ∈ Q , α ∈ Γ ∗ , w ∈ Σ ∗ .  

We further suppose that the initial configurations q1 α1 and q2 α2 satisfy that α1 = X1 and α2 = X2 for some 

X1 , X2 ∈ Γ . The general instance with q1 α1 and q2 α2 can be reduced to this form by adding some auxiliary 

stack symbols and rules, whose number is proportional to k = max{|α1 |, |α2 |}: we just arrange that some freshly 

added configurations q1Y1 , q2Y2 have the only possibility to move to q1 α1 , q2 α2 , respectively, by a fixed word 

a
k
.  

 

2.5.Grammars multiplicity problem  

A context-free grammar, a grammar for short, is a tuple G = (V , Σ , R , S ) where V is a finite set of 

nonterminals (or variables), Σ is a finite set of terminals, R ⊆ V × (V ∪ Σ )+ is a finite set of production rules, 

and S ∈ V is a start symbol. We write production rules in the form A → α where α ≠ ε, i.e., we assume that 

grammars are ε-free. The relation ⇒ on (V ∪ Σ )∗ , capturing a derivation step, is defined as follows: if A → α is 

in R then β Aγ ⇒ βαγ (for any β, γ ∈ (V ∪ Σ )∗ ). A sequence α0 ⇒ α1 ⇒ · · · ⇒ αk is a derivation, of αk from α0 . 

A derivation step β Aγ ⇒ βαγ is a leftmost derivation step if β ∈ Σ *. A derivation α0 ⇒ α1 ⇒ · · · ⇒ αk is 

leftmost if αi ⇒ αi+1 is a leftmost step for each i ∈ {0, 1, . . . ,k − 1}.   

 

2.6. Multiplicity problem 

For a grammar G = (V ,Σ , R , S ) and a word w ∈ Σ * we define the multiplicity mG (w ) ∈ N ∪ {∞} of w 

in G as the number of distinct leftmost derivations of w from S . We say that G is a finite-multiplicity grammar if 

mG (w) < ∞ for all w ∈ Σ*. Two finite-ultiplicity grammars G1 , G2 are said to be multiplicity equivalent if mG1 

(w ) = mG2 (w ) for all w ∈ Σ*.  If a grammar has a rule S → S then mG (w) ∈ {0, ∞} for all w ∈ Σ* , and 

multiplicity equivalence coincides with classical equivalence of grammars. Therefore multiplicity equivalence is 

undecidable in general. However for finite-multiplicity grammars, the decidability of multiplicity equivalence is 

a long-standing open problem [19]. This equivalence is known to be decidable only for subclasses of grammars, 

e.g., for unary grammars, i.e., grammars with |Σ | = 1, see [19,18,15] and the references therein.  

2.8. Results  

The results of this paper are captured by the next two theorems.  

 

Theorem 1. The following problems are interreducible in polynomial time, without changing the input alphabet 

or terminal alphabet, respectively:  

 

1. language equivalence for pAA;  

2. language equivalence for pBPA;  

3. multiplicity equivalence for (ε -free) finite-multiplicity grammars. 
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Theorem 2. The language equivalence problem for pAA with a one-letter input alphabet, the language 

equivalence problem for pAA with a one-letter input alphabet, and the multiplicity problem for (ε -free) finite-

multiplicity grammars with a one-letter terminal alphabet, are all:  

 

1. in PSPACE, and  

2. at least as hard as polynomial identity testing (the ACIT problem, see the next subsection).  

 

2.9. Arithmetic circuit identity testing  

Recall that an arithmetic circuit is a finite directed acyclic multigraph C whose vertices, called gates, have 

indegree 0 or 2. Vertices of indegree 0 are called input gates; each input gate is labelled with 0, 1, or a variable 

from the set {xi : i ∈ N}. Vertices of indegree 2 are called internal gates; each such gate is labelled with one of 

the arithmetic operations +, ∗ or −. Since C is a multigraph, both inputs of a given gate can stem from the same 

source. We assume that there is a unique gate with outdegree 0 called the output. Any circuit C has a naturally 

related polynomial polC . A circuit C is variable-free if all inputs gates are labelled 0 or 1; polC is constant in this 

case.  

The Arithmetic Circuit Identity Testing (ACIT) problem asks if polC is the zero polynomial, for a given 

circuit C. ACIT is known to be in coRP but it is open if it is in P; it is even open if there is a sub-exponential 

algorithm for this problem [2]. Utilising the fact that a variable-free arithmetic circuit of size O (n) can compute 

2
2n

 , Allender et al. [2] give a logspace reduction of the general ACIT problem to the special case of variable-free 

circuits. Furthermore, ACIT can be reformulated as the problem of deciding whether two variable-free circuits 

using only the arithmetic operations + and ∗ compute the same number [2].  

 

2.7.Overview of the next sections  

Theorem 1 is shown by adapting several existing constructions, and is postponed to Section 4. We start 

with proving Theorem 2 in Section 3: in Section 3.1 we show membership in PSPACE, and then show a 

polynomial reduction yielding the hardness result in Section 3.2.  

 

3. LANGUAGE EQUIVALENCE OF pAA WITH ONE INPUT LETTER  

 

In this section we consider unary pAA _ = (Q , Γ , {a}, →), i.e., those whose input alphabet is a singleton 

{a}. In unary pAA the next configuration is probabilistically determined solely by the current configuration. Here 

we elide the letter a in transitions, writing qX p  rα instead of qX  pa,  rα , and qβ p rγ instead 

of qβ  pa,  rγ . 

 

3.1. Membership in PSPACE 

In this subsection we prove the following lemma, establishing Point 1. in Theorem 2: 

 Lemma 1. The language equivalence problem for unary pAA is in PSPACE.  

 

 



    North Asian International Research Journal of Sciences, Engineering & I.T.  ISSN: 2454 - 7514   Vol. 1, Issue 5 December 2015 

 North Asian International research Journal consortiums www.nairjc.com 
9 

We show this by a polynomial reduction to the decision problem for ExTh(R), the existential fragment of 

the first-order theory of the reals, which is in PSPACE but not known to be PSPACE-hard. Hence language 

equivalence for unary pAA is not PSPACE-hard unless ExTh(R) is PSPACE-complete.  

 

We will first note that in the unary case language equivalence coincides with the equality of termination-

time distributions. For comparing two distributions, i.e., two countable sequences of nonnegative real numbers 

from [0, 1], it is convenient to use the framework of generating functions. This allows us to create a system of 

equations with precisely one solution in the case of almost surely terminating unary pBPA. The equivalence 

question will thus reduce to deciding truth in ExTh(R). The case of general unary pBPA is then handled by a 

reduction to the case of almost surely terminating pBPA. The result can then be extended to unary pAA by using 

the direction 2. ⇒ 1.  

3.1.1. Distribution of termination time of runs  

Let us assume a fixed unary (non-blocking) pAA∆ = (Q , Γ , {a}, →). We note that our model of unary 

pAA is essentially equivalent to a model which is also called “pAA” in the literature, see e.g., [4] and the 

references therein. As there is only one action in our unary pAA ∆, the pLTS S (∆) can be viewed as an infinite-

state Markov chain. Let a run of ∆ be an execution in S (∆) that is either infinite or ending with an empty-stack 

configuration. If a run is finite (i.e., it reaches an empty-stack configuration), we say that it terminates. For each 

configuration qα , by Run(qα) we denote the set of runs starting in qα . A probability measure P can be defined 

over Run(qα) in the standard way, see e.g., [4] for the formal details.  

To each configuration  qα we associate the random variable Tqα : Run(qα) → N ∪ {∞} that maps each run 

to the number of its steps, called the termination time of the run. For each i ∈ N we have that P(Tqα = i), i.e., the 

probability that a run from qα terminates in i steps, is equal to P∆qα (ai ). From this point of view, language 

equivalence means equality between  the (sub-)distributions of Tq1 α1 and Tq2 α2 . We note that some bounds 

on P(Tqα > i) were derived in [4], but equivalence seems not to have been analysed so far. 

 

3.1.2. Almost surely terminating pBPA  

 

We first restrict our attention to almost surely terminating pBPA ∆ = ({q}, Γ , {a}, →), i.e., we assume 

P(Tα < ∞) = 1 for each α ∈ Γ * ; for short we write Tα instead of Tqα since q is the only control state. Later we 

extend the proof to all unary pBPA, which together with Theorem 1 (to be proven in Section 4) will complete the 

proof.  

Given X , Y ∈ Γ , our (language equivalence) problem is to decide whether the distributions of T X and 

TY coincide, or whether there is i ∈ N such that P(T X = i)≠P(TY = i). To this end it is convenient to use the 

framework of generating functions. 

 

 

 

  

 



    North Asian International Research Journal of Sciences, Engineering & I.T.  ISSN: 2454 - 7514   Vol. 1, Issue 5 December 2015 

 North Asian International research Journal consortiums www.nairjc.com 
10 

3.1.3. Equation systems for generating functions, with unique solutions  

 

For a random variable T over N we define gT : [0,1]  → [0, 1] by    

gT (z) := E( z
T 

) =  





0

).(
i

iziTP  

Where E denotes the expectation with respect to P.  

Using the superscript (i ) to denote the i -th derivative, we note that gT = gT′ implies gT 
(i)

 (0) = gT 
(i)

 (0), and thus 

P(T = i ) = P(T′ = i ). The next proposition follows immediately.  

Proposition 1.  

The distributions of T, T′ are the same iff gT = gT  .  Convention. By T + T′ we refer to a random variable with 

the distribution  

P (T + T′ = i) =   



i

j

jiTPjTP
0

"().(   P(T = j). 

We further assume an almost surely terminating pBPA∆  = ({q}, Γ , {a}, →). For α ∈ Γ ∗ we often write gα 

instead of gTα. 

 

Proposition 2. For X , Y ∈ Γ , the distributions of T XY and T X + TY are the same, and gXY (z) = gX (z) · gY (z).  

 

Proof. The first part follows by observing that a terminating run from XY naturally corresponds to a terminating 

run from X followed by a terminating run from Y . For the rest we observe that  

 

jij

Y

i j

X

i

i

YX zzjiTPjTPziTTP 












  .)().().(
0 00

 

=





0

).(
i

i

X ziTP 





0

).(
i

i

Y ziTP  

 

We illustrate our equation systems by an example first. 

Example2. Letus consider consider a unary pBPA given by  

X  3.0

XY, X  7.0

and Y X 6.0

, Y  4.0

 

We can easily check that 

gX (z) = E( z
TX

)= 0.3 · E( z
TX

 |rule X  3.0   XY is taken in the first step 

+ 0.7 · E (z
TX

| rule X  7.0  is taken in the first step) 

= 0.3 · E (z
1+TX +TY

)+ 0.7 · E( z
1
) = z ·( 0.3 · gX (z) · gY (z) + 0.7 ). 

Similarly we can derive gY (z) = z · (0.6 · gX (z) + 0.4).  

For any z ∈ [0, 1], the pair (gX (z), gY (z)) is thus a fixed point of the function z · f  

where f (x1 , x2 ) = (0.3x1 x2 + 0.7, 0.6x1 + 0.4).  
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Generally, for our assumed almost surely terminating pBPA ∆= ({q}, Γ , {a}, →) we define the quadratic 

function f : [0, 1]
Γ
 → [0, 1]

Γ
 by  

 

fX (x) :=  
 


YZX XYZX

p pp

ppXypXyXz


   for x ∈ [0, 1]Γ . (1) 

Reasoning as in Example 2, we note that the vector g (z) := (gX (z))X ∈Γ satisfies g (z) = z · f (g (z)) for each z ∈ 

[0, 1], i.e., g (z) is a fixed point of z · f . Using Proposition 4 we will show that the fixed point is unique. The 

proof refers to several results in the literature. We first sketch one elementary fact separately, after recalling the 

notion of Jacobian matrices.  

Consider a function F : R
k
 → R

k
 , i.e., a k-tuple (F1 , F2 , . . . , Fk ) with Fi : R

k
 → R. Assume moreover that the 

partial derivatives of each Fi exist throughout R
k
 . For x = (x1 , x2 , . . . , xk ), we denote by F′ (x) the Jacobian 

matrix of F (x), i.e., the  

(k × k)-matrix with F′ij (x):=
jx


 Fi (x).  

CONCLUSION 

 

 We have proved the problems are interreducible in polynomial time, without changing the input alphabet 

or terminal alphabet, respectively same or equal in language equivalence for pAA; language equivalence for 

pBPA, multiplicity equivalence for (ε-free) finite-multiplicity grammars. The two identical equation systems for 

generating functions, with unique solutions are the same.  
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