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ABSTRACT 

Structural properties and computational capacity of reverse Aleshin type automata are 

introduced. In this paper, the computational capacity of reversible computations in aleshin 

type automata is investigated and turns out to lie properly in between the regular and 

deterministic context-free languages. Furthermore, it is shown that a deterministic context-

free language cannot be accepted reversibly if more than real time is necessary for 

acceptance. 

Keywords: Bisimulation probabilistic automata (BPA), probabilistic Aleshin automata, 

probabilistic labeled transition system (pLTS). 

 

1.  INTRODUCTION 

Nowadays, reversible computing has become a field of intensive study from several 

perspectives. In [12] one may find a recent survey which summarizes results on reversible 

Turing machines, reversible cellular automata, which are a massively parallel model consisting 

of interacting deterministic finite automata, and other reversible models such as logic gates, 

logic circuits, or logic elements with memory. Reversible deterministic finite automata are also 

studied in the context of algorithmic learning theory [2] and quantum computing [8,9] whereas 

construction problems are investigated in [5,6]. A recent paper which motivates the study of 

reversible computing from the vantage point of physics is [4]. How to compute reversibly by 

using a reversible programming language is presented in [2]. Reversibility has also been 

studied for other computational models such as, for example, flowcharts [5] or process calculi 

[4]. See also the references in [6,8].  

 

Computers are information processing devices which are physical realizations of abstract 

computational models. It may be difficult to define exactly what information is or how 

information should be measured suitably. It may be even more difficult to analyze in detail how 

a computational device processes or transmits information while working on some input. Thus, 

one first step towards a better understanding of information is to study computations in which 
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no information is lost. Another motivation to study information preserving computations is the 

physical observation that a loss of information results in heat dissipation [3,11]. A first study of 

this kind has been done in [3] for Turing machines where the notion of reversible Turing 

machines is introduced. Deterministic Turing machines are called reversible when they are also 

backward deterministic. One fundamental result shown in [3] is that every, possibly 

irreversible, Turing machine can always be simulated by a reversible Turing machine in a 

constructive way. This construction is significantly improved in [7] with respect to the number 

of tapes and tape symbols. Thus, for the powerful model of Turing machines, which describe 

the recursively enumerable languages, every computation can be made information preserving. 

At the other end of the Chomsky hierarchy there are the regular languages. Reversible variants 

of deterministic finite automata have been defined and investigated in [2,12]. It turns out that 

there are regular languages for which no reversible deterministic finite automaton exists. Thus, 

there are computations in which a loss of information is inevitable. Another result of [12] is 

that the existence of a reversible automaton can be decided for a regular language in 

polynomial time.  

Reversible variants of the massively parallel model of cellular automata and iterative arrays 

have been also studied in [5,6] with regard to the acceptance of formal languages. One main 

result there is the identification of data structures and constructions in terms of closure 

properties which can be implemented reversibly. Another interesting result is that, in contrast to 

regular languages, there is no algorithm which decides whether a given cellular device is 

reversible. 

 

2. PRELIMINARIES AND DEFINITIONS  

 

Let Σ
*
 denote the set of all words over the finite alphabet Σ . The empty word is denoted 

by λ, and Σ
+ 

 = Σ
*
 \ {λ}. The set of words of length at most n  0 is denoted by Σ

n
 . For 

convenience, we use Σλ for Σ ∪ {λ}. The reversal of a word w is denoted by w
R 

and for the 

length of w we write |w |. The number of occurrences of a symbol a ∈ Σ in w ∈ Σ
*
 is written as 

|w |a . Set inclusion is denoted by ⊆, and strict set inclusion by ⊂. A deterministic Aleshin type 

automaton (DAA) is a system M = Q ,Σ ,Γ ,δ,q0 , ⊥, F  , where Q is a finite set of states, Σ 

is the finite input alphabet, Γ is a finite pushdown alphabet, q0 ∈ Q is the initial state, ⊥ ∈ Γ is a 

distinguished pushdown symbol, called the bottom-of-pushdown symbol, which initially 

appears on the pushdown store, F ⊆ Q is the set of accepting states, and δ is a mapping from Q 

× Σλ × Γ to Q × Γ∗ called the transition function. There must never be a choice of using an input 

symbol or of using λ input. So, it is required that for all q in Q and Z in Γ : if δ (q, λ, Z ) is 

defined, then δ (q,a, Z ) is undefined for all a in Σ .  A configuration of a Aleshin automaton is a 

quadruple (v, q, w, γ), where q is the current state, v is the already read and w the unread part of 

the input, and γ the current content of the pushdown store, the leftmost symbol of γ being the 

top symbol. On input w the initial configuration is defined to be (λ,q0 , w , ⊥). For q ∈ Q , a ∈ 

Σλ , v , w ∈ Σ
*
 , γ ∈ Γ

*
 , and Z ∈ Γ , let (v ,q,aw , Zγ ) be a configuration. Then its successor 
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configuration is (va, p, w , βγ ), where δ (q,a, Z ) = (p, β ). We write (v ,q,aw , Zγ )├ (va, p, w , 

βγ ) in this case. The reflexive transitive closure of ├ is denoted by ├
∗ .To simplify matters, we 

require that in any configuration the bottom-of-pushdown symbol appears exactly once at the 

bottom of the pushdown store, that is, it can neither appear at some other position in the 

pushdown store nor be deleted. Formally, we require that if δ (q, a, Z ) = (p, β ) then either Z  

⊥ and β does not contain ⊥, or Z = ⊥ and β = β ⊥, where β does not contain ⊥. The language 

accepted by M with accepting states is 

L (M) = {w ∈ Σ
* 
 (λ,q0, w, )├

*
 (w,q,λ,γ), for some q  F and γ  Γ∗

 
} 

In general, the family of all languages that are accepted by some device X is denoted by L (X ). 

 Now we turn to reversible Aleshin type  automata. Reversibility is meant with respect to the 

possibility of stepping the computation back and forth. To this end, the Aleshin type automata 

have to be also backward deterministic. That is, any configuration occurring in any 

computation must have at most one predecessor which, in addition, is computable by a DAA. 

For reverse computation steps the head of the input tape is always moved to the left. Therefore, 

the automaton rereads the input symbol which has been read in a preceding forward step. So, 

for reversible Aleshin type automata there must exist a reverse transition function.  

A reverse transition function δR : Q × Σλ × Γ → Q × Γ∗ maps a configuration to its predecessor 

configuration. For q ∈ Q , a ∈ Σλ , v , w ∈ Σ∗ , γ ∈ Γ∗ , and Z ∈ Γ , let (va,q, w , Zγ ) be a 

configuration. Then its predecessor configuration is (v , p, aw , βγ ), where δR (q,a, Z ) = (p, β ). 

We write (va,q, w , Zγ ) ┤ (v , p,aw , βγ ) in this case. Automaton M is said to be reversible 

(REV-AA), if there exists a reverse transition function δR such that ci+1 ┤ ci , 0   I   n 1, 

for any sequence c0 ├c1├…..├ cn of configurations passed through by M and beginning 

with an initial configuration c0 . 

To clarify our notion we continue with an example.  

 

Example 1. The linear context-free language {wcw
R
 | w ∈ {a,b}∗ } is accepted by the REV-AA 

M = {q0 ,q1 ,q2 }, {a,b, c}, {a, b, ⊥}, δ, q0 , ⊥, {q2 }  , where the transition functions δ 

and δR are as follows.  

 

Transition function δ  

(1) δ (q0 , a, ⊥) = (q0 ,a⊥) 

(2) δ (q0 , b, ⊥) = (q0 , b⊥) 

(3) δ (q0 , a, a) = (q0 ,aa) 

(4) δ (q0 , a, b) = (q0 ,ab) 

(5) δ (q0 , b, a) = (q0 , ba) 

(6) δ (q0 , b, b) = (q0 , bb) 

(7) δ (q0 , c , ⊥) = (q1 , ⊥) 
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(8) δ (q0 , c , a) = (q1 ,a) 

(9) δ (q0 , c , b) = (q1 , b) 

(10) δ (q1 , a, a) = (q1 , λ) 

(11) δ (q1 , b, b) = (q1 , λ) 

(12) δ (q1 , λ, ⊥) = (q2 , ⊥) 

 

The transitions (1)-(6) of δ are used by M to store the input prefix w . When a c appears in the 

input, transitions (7)-(9) are used to change to state q1 while the pushdown store remains 

unchanged. By transitions (10) and (11) the input suffix w
R
 is matched with the stored prefix w 

. Finally, if the bottom-of Aleshin type symbol is seen in state q1 , automaton M changes into 

the sole accepting state q2 and the computation necessarily stops.  

 

Reverse transition function δR  

(1) δR (q0 , a, a) = (q0 , λ) 

(2) δR (q0 , b, b) = (q0 , λ) 

(3) δR (q1 , c , ⊥) = (q0 , ⊥) 

(4) δR (q1 , c , a) = (q0 ,a) 

(5) δR (q1 , c , b) = (q0 , b) 

(6) δR (q1 , a, a) = (q1 ,aa) 

(7)        δR (q1 , a, b) = (q1 ,ab) 

(8) δR (q1 , b, a) = (q1 , ba) 

(9) δR (q1 , b, b) = (q1 , bb) 

(10) δR (q1 , a, ⊥) = (q1 ,a⊥) 

(11) δR (q1 , b, ⊥) = (q1 , b⊥) 

(12) δR (q2 , λ, ⊥) = (q1 , ⊥) 

 

For the backward computation the transitions of δR are used. Since there is only one 

transition of δ that changes to state q2 , transition (12) reverses this step. For input symbols a 

and b, the only transitions of δ that change to state q1 are (8) and (9) which pop the symbol 

from the top of the pushdown store if it matches the current input symbol. So, transitions (6)-

(11) of δR are constructed to reverse the popping by pushing the current input symbol. In 

forward computations M changes from state q0 to q1 if and only if the current input symbol is a 

c , whereby the pushdown store remains unchanged. These steps can uniquely be reversed by 

the transitions (3)-(5) of δR . While in state q0 , in any forward step an input symbol a or b is 

pushed. Therefore, δR reverses the pushing by popping whenever the stack  store is not empty 

and an a or b appears in the input by transitions (1) and (2). This concludes the construction of 

δR .   
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Example 2. Only slight modifications of the construction given in Example 1 show that the 

languages {a
n
cb

n
 | n  0}, and {a

n
cb

n
 | n  0}∗ , as well as {a

m
cb

n
ea

m 
| m,n  0} ∪ 

{a
n
db

n
ea

m
 | m,n  0} are accepted by REV-PDAs as well. 

 

3. STRUCTURAL PROPERTIES AND COMPUTATIONAL CAPACITY  

 

In this section the computational capacity of REV-AAs is considered. First, we examine 

the structure of transitions that enable reversibility, and investigate the role played by λ-steps.  

 

Fact 3. Let M = Q ,Σ ,Γ ,δ,q0 , ⊥, F  be a REV-AA.  

 

1. As for the transition function also for the reverse transition function δR we have necessarily 

that for all q in Q and  Z in Γ : if δR (q, λ, Z ) is defined, then δR (q,a, Z ) is undefined for 

all a in Σ . Otherwise the predecessor configuration  would not be unique and, thus, M 

not be reversible.  

2. All transitions of M are either of the form δ (q,a,Z) = (p, λ) (pop), or δ (q,a, Z) = (p, Y ) 

(top), or δ (q,a, Z ) = (p, Y Z ) (push), where q, p ∈ Q , a ∈ Σλ , Y , Z ∈ Γ . There is no transition 

that modifies the stack store except for the topmost symbol, since the reverse transition has only 

access to the topmost symbol.  

 

It is well known that general deterministic Aleshin type  automata that are not allowed to 

perform λ-steps are weaker than DAAs that may move on λ input [10]. To go a little more into 

details we consider the maximal number of consecutive λ-steps. A REV-AA is said to be quasi 

realtime if there is a constant that bounds this number for all computations. The REV-AA is 

said to be realtime if this constant is 0, that is, if there are no λ-steps at all. In the following we 

also deal with weakly quasi realtime pushdown automata, that is, the length of any sequence of 

consecutive λ-steps in any computation is either bounded by a constant depending on the 

pushdown automaton only or infinite.  

 

Theorem 1. For every REV-AA an equivalent weakly quasi realtime REV-AA can effectively 

be constructed.  

 

Proof. Given a REV-AA M = Q ,Σ ,Γ ,δ,q0 , ⊥, F  we construct an equivalent REV-AA M_ = 

Q ,Σ ,Γ ,δ_ ,q0 , ⊥, F  by modifying δ with respect to λ-transitions as follows.  

 

(1) Two consecutive top-transitions (Fact 3) are merged into one. That is, every pair of the 

form δ (q, λ, Z ) = (q, Z ) and δ (q, λ, Z ) = (q , Z ) is replaced by δ (q, λ, Z ) = (q , 

Z).Since M is deterministic every application of the first transition is followed by an 

application of the second transition, and since M is reversible every application of the second 
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transition is preceded by an application of the first transition. The corresponding reverse 

transitions δR (q, λ, Z) = (q, Z ) and δR(q, λ, Z ) = (q , Z ) are replaced by δR (q , λ, Z )= 

(q, Z ). So, the construction step preserves reversibility and yields to an equivalent automaton.  

(2) A Aleshin type-transition and a following top-transiti on are merged into one Aleshin type 

transition. That is, every pair of the form δ (q, λ, Z ) = (q, Z Z ) and δ (q , λ, Z) = (q, Z)is 

replaced by δ (q, λ, Z ) = (q , Z, Z ). The corresponding reverse transitions δR (q , λ, Z ) = 

(q, λ) and δR (q , λ, Z)= (q, Z) are replaced by δR(q,λ,Z) = (q,λ) Similar as above, the 

construction step preserves reversibility and yields to an equivalent automaton. 

(3) A Aleshin -transition and a following pop-transition are merged into one top-transition. 

That is, every pair of the form δ (q, λ, Z) = (q, Z Z) and δ (q, λ, Z) = (q , λ) is replaced by δ 

(q, λ, Z ) = (q , Z ). The corresponding reverse transitions  

δR(q , λ, Z ) = (q, λ) and δR (q , λ, Z ) = (q, Z, Z ) are replaced by δR (q, λ, Z ) = (q, Z ). 

Again, the construction step preserves reversibility and yields to an equivalent automaton.  

  Next, the three steps are repeated until no more merging is possible, which concludes the 

construction of M .  It remains to be shown that the REV-AA M is weakly quasi realtime. Due 

to the construction, any sequence of consecutive λ-steps in any computation of M possibly 

starts with a sequence of pop- and top-moves, where no two top-moves appear consecutively. 

Then several push-moves may follow. After a push-move there is never a pop- or top-move. 

 Assume that there is a computation on some input such that at the beginning of a sequence of 

λ-steps at least |Q | · |Γ | consecutive pop- or top-moves are performed. If these steps appear 

before any non-λ-step, M starts each computation with an infinite loop on λ input and, thus, M 

is weakly quasi realtime.  

Next assume that at least |Q | · |Γ | consecutive pop- or top-steps appear after some non-λ-step, 

and let r : Σ ∗
 
× Q × Σ ∗ × Γ + → Q × Γ be a mapping that maps a configuration to its state and 

the topmost Aleshin type symbol. Then there is a (partial) computation ck−1 ├ ck
├* ck+i

├*

 ck+i+j−1 ├  ck+i+j , where the transition from ck−1 to ck reads some non-λ input a ∈ Σ 

and all the other transitions are on λ input. Moreover, we have r (ck+i ) = r (ck+i+ j ), for some 

minimal 0   i , 1   j such that i + j  | Q | · |Γ |. Let r (c
 k+i) = (p, Z ). Then, for i = 0, δR 

(p, λ, Z ) has to be defined to get back from configuration ck+j to configuration ck+j−1 . At the 

same time δR (p,a, Z ) has to be defined to get back from configuration ck to configuration ck−1 , 

a contradiction. For I  1we know that r(ck+i−1 ) and r (ck+i+j−1 ) are different since i has been 

chosen to be minimal. 

 

 Since for this case δR (p, λ, Z ) has to be defined in such a way that the computation steps 

back from configuration ck+I to configuration ck+i−1 , and at the same time such that the 

computation steps back from ck+i+j to ck+i+j−1 by push- or top-moves, we obtain a 

contradiction, too.Therefore, any sequence of consecutive λ-steps starts with at most |Q | · |Γ | 

pop- or top-moves. If there are at least | Q | · |Γ | subsequent push moves, the computation runs 
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into an infinite loop on λ input and, thus, M is weakly quasi realtime. If, otherwise, there are 

less than |Q | · |Γ | push-moves, the length of the whole sequence of λ-steps is bounded by the 

constant 2 · |Q | · |Γ | that depends on M only. So, also in this case M is weakly quasi realtime.   

To conclude the consideration of λ-steps we present the result that the family L (REV-

AA) is a subfamily of the realtime deterministic context-free languages which is the class of 

languages accepted by DAAs that perform no λ-steps.  

 

Theorem 2: For every REV-AA an equivalent realtime REV-AA can effectively be 

constructed.  

 

Proof. Let M = Q ,Σ ,Γ ,δ,q0 , ⊥, F  be a REV-AA. By Lemma 4 we may assume that 

M is weakly quasi realtime such that the number of any consecutive λ-steps is bounded by d < 

2 · |Q | · |Γ | or is infinite, where in the latter case the infinite loop consists of Aleshin type -

moves only. Therefore, to check whether the sequence starting from a given configuration is 

finite, we have to simulate at most d steps of M.  

In order to construct an equivalent realtime REV-AA M, basically, the idea is to simulate a 

possibly empty sequence of λ-moves, one following non-λ-step, and a following possibly 

empty sequence of λ-moves at once. If a sequence of λ-moves is infinite, it may drive M 

through accepting and rejecting states. So, the simulation stops accepting or rejecting 

dependent on whether an accepting state appears in the loop. In addition, special attention has 

to be paid for computations where a bounded sequence of λ-steps appears after reading the last 

input symbol. Again, these λ-steps may drive M through accepting and rejecting states. So, we 

cannot simply simulate a sequence entirely, since the last state could be rejecting while 

predecessor states are accepting. We construct M = Q, Σ , Γ, δ ,q0,⊥, F  in such a way 

that a possibly empty, finite sequence of λ-moves and a non-λ-step of M are simulated together 

with a possibly empty, finite sequence of λ steps following the non-λ-step, where the second 

sequence of λ-steps is simulated until an accepting state appears for the last time or entirely if it 

consists of rejecting states only. Moreover, the whole simulation has to preserve the 

reversibility of M.  

For a formal construction, we exclude the case where an infinite loop on λ input appears before 

any non-λ-step. In this case, M starts each computation with an infinite loop on λ input. 

Depending on whether this loop includes an accepting state, L (M) is either {λ} or ∅. For both 

languages there is an equivalent realtime REV-AA.  

For the other case, we recall that M simulates at most 2d + 1 steps of M at once during which 

it has to access no more than the topmost 2d + 1 stack symbols. On the other hand, it cannot 

push more than 2d + 1 symbols onto the store. For the construction obeying the properties of 

Fact 3, we add a register to the states in which M can store up to 2d Aleshin type pushdown 

symbols of M (the topmost ones), and consider every string of 2d + 1 pushdown symbols of M 

to be a single Aleshin type pushdown symbol of M :  
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Q = {qa ,qr } ∪ _(Q × Γ
  2d), Γ = (Γ \ {⊥})

2d+1
 ∪ {⊥},  

  

q0= (q0 , λ),  F = {qa } ∪ (F × Γ
  2d

). 

Given (q, x1 x2 · · · xk ) ∈ Q, 0   k  2d, a ∈ Σ , v ∈ Σ* , and z1 z2 · · · z2d+1 ∈ Γ , the 

transition δ ((q, x1 x2 · · · xk),a, z1 z2 · · · z2d+1 ) is defined by the computation    

c1├ c2├….. cn of M starting on c1 = (v ,q, a, x1 x2 · · · xk z1 z2 · · · z2d+1 ), where n 2d + 1.  

 

 Case 1. The computation starts with a possibly empty sequence of λ-moves, followed by an 

a-move during 2d + 1 steps, and subsequently M runs into an infinite loop of push-moves on λ 

input. If this loop contains an accepting state we define δ ((q, x1 x2 · · · xk ),a, z1 z2 · · · z2d+1 ) 

= (qa , z1 z2 · · · z2d+1 ), otherwise δ ((q, x1 x2 · · · xk ), a, z1 z2 · · · z2d+1 ) = (qr , z1 z2 · · · z2d+1 

), where δ is undefined for qa and qr .  

 

Case 2. The computation starts with a possibly empty sequence of λ-moves, followed by an a-

move during 2d + 1 steps, and subsequently M performs a finite number of λ-steps. Then let cn 

be the configuration reached after the last λ-step, and cm , m  n, be the configuration reached 

sometime after the non-λ-step in which an accepting state appears for the last time, or cm = cn 

if none of these configurations is accepting.  

Now, let cm = (v , p, λ, y j y j−1 · · · y1 ) and define  

                               

      ((p, y j · · · y 1 ), λ) if 0j2d,  

δ ((q, x1 x2 · · · xk ), a, z1 z2 · · · z2d+1) = (p, yj · · · y2d+2 ), y2d+1 · · · y1 ) if 2d + 1j 4d + 1,  

 {((p yj · · · y4d+3), y4d+2 · · · y2d+2 , y2d+1 · · · y1 )  

                                                        if 4d + 2j 6d + 2.  

Note that in the last alternative, M could not have had access to the symbols z1 , z2 , . . . , z2d+1 

and, therefore, y2d+1 · · · y1 = z1 z2 · · · z2d+1 . So, the properties of Fact 3 are obeyed. The 

completion of the definition of δ for the situations in which the bottom-of-pushdown symbol is 

the topmost symbol is straightforward. The case where no non-λ-step appears during 2d + 1 

steps can only appear at the beginning and has been excluded before. 

  

Given an input w, the computation of M is unambiguously split into sequences of steps 

each of which is performed by M at once. If M accepts, so does M also in cases where the 

input is accepted after some λ-steps at the end of the computation. Conversely, every step of M 

corresponds to a sequence of steps of M. So, we have L (M) = L (M). Moreover, M is 

reversible, since δR can be defined by δR in almost the same way as δ by δ . The only 

difference concerns the occurrence of accepting states in sequences of λ-transitions following 
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non-λ-steps. The reverse transition δR simulates the sequence until the first accepting state 

appears or not at all if it consists of rejecting states only. By construction, M is realtime.  

 

Theorem 5 provides a class of deterministic context-free languages that are not reversible. 

Every deterministic context free language that is not realtime is not accepted by any REV-AA. 

For example, the language 

{a
m

eb
n
ca

m
|m,n0}{a

m
eb

n
ca

m
|m,n0} 

does not belong to the family L (REV-AA) (see, for example, [7,10]). This result immediately 

raises the question of whether all realtime deterministic context-free languages are reversible. 

The next lemma answers this question negatively. 

Theorem 3. The realtime deterministic linear language {a
n
b

n
 | n  0} is not accepted by any 

REV-AA. 

 

Proof. Assume in contrast to the assertion that L = {a
n
b

n
 | n0} is accepted by some REV-AA 

 M = Q ,Σ ,Γ ,δ,q0 , ⊥, F.W ithout loss of generality, we may assume that M is realtime. 

During the computation of M on input prefixes a
+
 no combination of state and content of the 

stack  store may appear twice. If 

(λ,q0 ,a
n
b

n
 , ⊥) ├

* 
(a

m1
 , q1 ,a

n−m1
 b

n
 , σ1  )├

+
 (a

m1+m2
,q1,a

n-m1-m2
b

n
,1 ) 

is the beginning of an accepting computation, then so is (λ,q0 ,a
n−m2 

b
n
 , ⊥)├

*
  (a

m1
 , q1 ,a

n−m1 

−m2 
b

n
 , σ1), but a

n−m2 
b

n
 does not belong to L . This implies that each height of the stack store 

may appear only finitely often and, thus, that the height increases arbitrarily. So, M runs into a 

loop while processing a’s, that is, the combination of a state and, for any fixed number k, some 

k topmost pushdown symbols α appear again and again. To render the loop more precisely, let 

(a
n−x 

, q,a
x
b

n
 , αγ ) be a configuration of the loop. Then there is a successor configuration with 

the same combination of state and topmost pushdown symbols (a
n−x+y 

,q,a
x−y 

b
n
 , αβ ). We may 

choose α so that during the computation starting in (a
n−x 

, q, a
x
b

n 
, αγ ) no symbol of γ is 

touched, that is, αβ = αγγ . Therefore, the computation continues as  

        (a
n−x+y 

, q,a
x−y 

b
n
 , αγ γ )+(a

n−x+2 y
 , q,a

x−2 y
b

n 
, αγ γ γ ). 

Next, we turn to the input suffixes. While M processes the input suffixes b
+ 

, again, no 

combination of state and content of the pushdown store may appear twice. If 

 

                (λ,q2 ,b
n
 , 2) ├

* 
(a

n
 b

m1
, q3 ,a

n−m1
 b

n
 , σ3 )├

+
 (a

n
 b

m1+m2
,q3,b

n-m1-m2
b

n
,3) 

results in an accepting computation, then so does 

(a
n 

, q2 , b
n−m2

 , σ2  )├
*
 (a

n
b

m1
 ,q3 , b

n−m1 −m2 
, σ3 ), 

but a
n
b

n−m2
 does not belong to L . This implies that each height of the stack  store may appear 
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only finitely often. Moreover, in any accepting computation the stack store has to be decreased 

until some symbol of γ appears. Otherwise, we could increase the number of a’s by y to drive 

M through an additional loop while processing the input prefix. The resulting computation 

would also be accepting but the input does not belong to L. Together we conclude that M runs 

into a loop that decreases the height of the pushdown store while processing the b’s, and that 

there are only finitely many combinations of state and content of the stack store which are 

accepting.  

Now, consider two different numbers n1 < n2 such that M accepts a
n1

b
n1

 and a
n2

b
n2 

in the   

same   combinations of state and content of the pushdown store, say in state qa with γa in the 

pushdown store.   We have the forward computations (λ, q0 ,a
n1

b
n1

 , ) ├
n1

 (a
n1

 , q1 , b
n1

 , γ1)├ 
n1

 (a
n1

 b
n1

 , qa , λ, γa)   and (λ, q0 , a
n2

b
n2

 , ⊥) ├
n1

 (a
n1

,q1, a
n2 −n1

b
n2

, γ1) ├
n2 −n1

 (a
n2

, q2,b
n2

, γ2 ) ├
n2

 

(a
n2

b
n2

 , qa , λ, γa ). Since M is reversible and runs through loops while processing the b’s, the 

backward computation also runs through loops that now increase the height of the stack store. 

This backward loop cannot be left while reading b’s. So, we have (a
n1

b
n1

,qa,λ,γa) ┤
n1

 (a
n1

,q1, 

b
n1

,γ1) and (a
n2

 b
n2

,qa, λ, γa) ┤
n1

 (a
n2

b
n2 −n1 

, q1 , b
n1

 , γ1 ) ┤
n2 – n1

(a
n2

 , q2 , b
n2

 , γ2 ) 

Due to the deterministic behavior and the reversibility the last step implies (a
n2

 , q2 , b
n2

 , γ2 ) 

├
n2 −n1

  

(a
n2

 b
n2 −n1 

, q1 , b
n1 

, γ1 ).  

Finally, we consider the input a
n2

 b
n2 −n1 

a
n2 −n1 

b
n2

 which does not belong to L . However, we 

obtain the accepting computation  

 

(λ,q0,a
n2

b
n2 −n1

a
n2 −n1

b
n2

,⊥)├ 
n2

(a
n2

,q2,b
n2 −n1

a
n2 −n1

b
n2

, γ2)├ 
n2 −n1

(a
n2

b
n2 −n1

,q1,a
n2

 
−n1 

b
n2

,γ1 )  ├ 
n2 

−n1
 (a

n2
b

n2 −n1
a

n2 −n1
,q2,b

n2
, γ2) ├

n2
 (a

n2
 b

n2 −n1 
a

n2 −n1 
b

n2
, qa, λ,γa ),  

a contradiction.   

 

Theorem 3 together with Theorem 2 shows that the family L (REV-AA) is strictly included in 

the family of languages accepted by realtime deterministic Aleshin type automata. So, let us 

impose another natural restriction on languages accepted by realtime deterministic Aleshin type 

automata. Not only in connection with reversibility it is interesting to consider realtime 

deterministic context-free languages whose reversals are also realtime deterministic context-

free languages. By Example 2 the language  

{a
m

cb
n
ea

m
  m,n  0} ∪ {a

n
db

n
ea

m
   m,n   0}  

belongs to L(REV-AA), but its reversal is known not to be accepted by any realtime 

deterministic Aleshin type automaton. Conversely, the language {a
n
b

n
 | n  0}

*
 as well as its 

reversal is realtime deterministic context free, but not accepted by any reversible aleshin type 

automaton. So, we derive the following corollary.  

Corollary 1. The family L (REV-AA) is incomparable with the family of realtime 

deterministic context-free languages whose reversals are also realtime deterministic context-
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free languages.  

Furthermore, theorem3 together with the language {a
n
cb

n 
| n  0}∗ of Example 2 reveals 

the following corollary.  

Corollary 2. The families of linear context-free languages and L (REV-AA) are incomparable.  

 

In [12] it has been shown that there are regular languages which are not accepted by any 

reversible finite automaton. Next, we show that the regular languages are included in L (REV-

AA).  

 

Theorem 4. The regular languages are strictly included in L(REV-AA).  

 

Proof. By Example 1 the non-regular language {wcw
R
 | w ∈ {a,b}∗

 
} belongs to L (REV-AA). 

On the other hand, given a deterministic finite automaton M with state set Q , input alphabet Σ , 

initial state q0 , set of accepting states F , and transition function δ : Q × Σ → Q , we construct 

an equivalent REV-AA  M . The idea is to simulate M in the finite control of M directly, and 

to store the state history on the stack store. Formally, let M = Q ,Σ,Γ ,δ ,q0, ⊥, F  , 

where Γ = Q ∪ {⊥} and δ (q,a,q ) = (δ(q,a),qq ), for all q ∈ Q , q ∈ Γ , and a ∈ Σ . The 

reverse transition δR is derived as δR (p, a, q) = (q, λ).  

By construction, M and M are equivalent and M is reversible.   

Summarizing the results so far, we have obtained the following hierarchy, where REG denotes 

the regular and Lrt (DAA) the realtime deterministic context-free languages:  

           REG ⊂ L (REV-AA) ⊂ Lrt (DAA) ⊂ L (DAA).  

 

CONCLUSION.  

 For every reverse Aleshin type automata, an equivalent weakly quasi realtime reverse 

Aleshin type automata   can effectively be constructed.The family reverse Aleshin type 

automata is incomparable with the family of realtime deterministic context-free languages 

whose reversals are also realtime deterministic context-free languages. The realtime 

deterministic linear language is not accepted by any reverse Aleshin type automata. 
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